Photochemistry and Spectroscopy of Singlet Oxygen in Solvents. Recent Advances which Support the Old Theory

2016;
: pp. 519 – 530
Authors: 

Boris Minaev

Chemistry and Nano-Material Science Department, Bogdan Khmelnitsky National University, Cherkasy, 18031, Ukraine

Molecular oxygen is a paramagnetic gas with the triplet O2( ) ground state which exhibits just sluggish chemical reactivity in the absence of radical sources. In contrast, the excited metastable singlet oxygen O2( ) is highly reactive; it can oxygenate organic molecules in a wide range of specific reactions which differ from those of the usual triplet oxygen of the air. This makes the singlet oxygen an attractive reagent for new synthesis and even for medical treatments in photodynamic therapy. As an important intermediate O2( ) has attracted great attention of chemists during half-century studies of its reactivity and spectroscopy, but unusual properties of singlet oxygen makes it difficult to unravel all mysterious features. The semiempirical theory of spin-orbit coupling in dioxygen and in collision complexes of O2 with diamagnetic molecules proposed in 1982 year has explained and predicted many photochemical and spectral properties of dioxygen produced by the dye sensitization in solvents. Recent experiments with direct laser excitation of O2 in solvents provide a complete support of the old theory. The present review scrutinizes the whole story of development and experimental verification of this theory.

[1] Krasnovsky A., jr.: Biochemistry-Moscow, 2007, 72, 1065.
[2] Krasnovsky A.: Ann. Rev. Plant Physiol., 1960, 11, 363.
[3] Foot C.: Science, 1968, 162, 963.
[4] Minaev B.: Russ. Chem. Rev., 2007, 76, 988.
[5] Minaev B.: Chem. Chem. Technol., 2010, 4, 1.
[6] Belyakov V., Vasil΄ev R., Minaev B. et al. Izvestiya Acad. Nauk SSSR, Ser. Fiz., 1987, 57, 540.
[7] Mulliken R.: Nature, 1928, 128, 505.
[8] Нerzberg G.: Nature,1934, 133, 759.
[9] Fraunhofer L.:Denkshrift. Munchner Academie, 1814-1815, 5.
[10] Minaev B.: Sov. Phys. J., 1978, 21, 1205.
[11] Minaev B.: Int. J. Quant. Chem., 1980, 27, 367.
[12] Kautsky H.: Trans. Faraday Soc., 1939, 35, 216.
[13] Krasnovsky A., Jr.: Photochem. Photobiol., 1979, 29, 29.
[14] Krasnovsky A., jr.: Excited Molecules [in:] Krasnovsky A., jr (Ed.) Kinetics of Transformations (in Rus.), Nauka, Leningrad 1982, 32-50.
[15] Krasnovskiy A., jr.: Chem. Phys. Lett., 1981, 81, 443.
[16] Krasnovsky A., jr.: Biofizika, 1976, 21, 748.
[17] Salokhiddinov K., Byteva I. and Dzhagarov B.: Opt. Spectrosc., 1979, 47, 881.
[18] Salokhiddinov K., Dzhagarov B., Byteva I. and Gurinovich G.: Chem. Phys. Lett., 1980, 76, 85.
[19] Kearns D.: Chem. Rev., 1971, 71, 395.
[20] Sveshnikova E. and Minaev B.: Opt. Spectrosc., 1983, 54, 542.
[21] Gordon I., Kassi S., Campargue A. et al.: J. Quantit. Spectrosc. Radiative Transfer, 2010, 111, 1174.
[22] Minaev B.: Zh. Prikl. Spectroscop., 1985, 42, 518.
[23 ] Minaev B.: Opt. Spectry., 1985, 58, 761.
[24] Merkel P. and Kearns D.: J. Am. Chem. Soc., 1972, 94, 7244.
[25] Hurst J., McDonald J. and Schuster G.: J. Am. Chem. Soc., 1982, 104, 2065.
[26] Hurst J. and Schuster G.: J. Am. Chem. Soc., 1983, 105, 5756.
[27] Ogilby P. and Foote C.: J. Am. Chem. Soc., 1983, 105, 3423.
[28] Rodgers M.: J. Am. Chem. Soc., 1983, 105, 6201.
[29] Schmidt R. and Afshari E.: Ber. Bunsen-Ges., 1992, 96, 788.
[30] Schmidt R. and Brauer H.-D.: J. Am. Chem. Soc., 1987, 109, 6976.
[31] Krasnovsky A.: J. Photochem. Photobiol. A, 2008, 196, 210.
[32] Schweitzer C. and Schmidt R.: Chem. Rev., 2003, 103, 1685.
[33] Sivery A., Anquez F., Pierlot C. et al.: Chem. Phys. Lett., 2013, 555, 252.
[34] Krasnovsky A., jr., Kozlov A. and Roumbal Y.: Photochem. Photobiol. Sci., 2012, 11, 988.
[35] Krasnovsky A. and Kozlov A.: J. Photochem. Photobiol. A, 2016, 329, 167.
[36] Bregnhoj M., Blazquez-Castro A., Westberg M. et al.: J. Phys. Chem. B, 2015, 119, 5422.
[37] Bregnhoj M., Westberg M., Jensen F. and Ogilby P.: Phys. Chem. Chem. Phys., 2016, 18, 22946.
[38] Bregnhoj M., Kragpoth M., Westberg M. et al.: J. Phys. Chem. A, 2016, 120, in press.
[39] Westberg M., Bregnhoj M., Blazquez-Castro A. et al.: J. Photochem. Photobiol. A, 2016, 321, 297.
[40] Ogilby P.: Chem. Soc. Rev., 2010, 39, 3181.
[41] Minaev B. and Agren H.: J. Chem. Soc. Faraday Trans., 1997, 93, 2231.
[42] Minaev B., Murugan A. and Agren H.: Int. J. Quant. Chem., 2013, 113, 1847.
[43] Minaev B.: Theor. Experim. Chem., 1984, 20, 199.
[44] Minaev B.: J. Mol. Struct. (Theochem), 1989, 52, 207.
[45] Valiev R. and Minaev B.: J. Mol. Model., 2016, 22, 214.
[46] Hild M. and Schmidt R.: J. Phys. Chem. A, 1999, 103, 6091.
[47] Schurlock R. and Ogilby P.: J. Phys. Chem., 1987, 91, 4599.
[48] Ogryzlo E. and Tang C.: J. Am. Chem. Soc., 1970, 92, 5034.
[49] Darmanyan A.: J. Phys. Chem. A, 1989, 104, 9833.
[51] Minaev B., Mikkelsen K. and Agren H.: Chem. Phys., 1997, 220, 79.
[52] Minaev B., Lunell S. and Kobzev G.: J. Mol. Struct. (Theochem), 1993, 284, 1.
[53] Minaev B. and Kobzev G.: Spectrochimica Acta A, 2003, 59, 3387.
[54] Minaev B., Kukueva V. and Agren H.: J. Chem. Soc. Faraday Trans., 1994, 90, 1479.
[55] Minaev B.: Theor. Experim. Chem., 1985, 21, 567.
[56] Chou P.-T. and Khan A.: Chem. Phys. Lett., 1984, 103, 281.
[57] Reshetnyak O., Koval’chuk E., Skurski P. et al.: J. Lumines., 2003, 105, 27.
[58] Dougherty T., Gomer C., Henderson B. et al.: J. Natl. Cancer Inst., 1998, 90, 889.
[59] Jensen R., Arnbjerg J. and Ogilby P.: J. Am. Chem. Soc. 2012, 134, 9820.
[60] Usselman R., Hill I., Singel D. and Martino C.: PLoS ONE, 2014, 9, e93065.
[61] Liu X., Ryabenkova Y. and Conte M.: Phys. Chem. Chem. Phys., 2015, 17, 715.
[62] Kiselev V., Kislyakov I. and Burchinov A.: Opt. Spectrosc., 2016, 120, 520.
[63] Minaev B.: Spectrochim. Acta A, 2004, 60, 1027.
[64] Minaev B., Minaeva V. and Evtuhov Yu.: Int. J. Quant. Chem., 2009, 109, 500.