Catalysis of controlled selective oxidation of hydrocarbons utilizing molecular oxygen, being of great potential for the environmental friendly chemical industry, has to be designed by analogy with biological enzymatic reactions. Catalysis of oxidation of hydrocarbons by paramagnetic dioxygen avoiding a classical free radical chain mechanism needs to overcome spin prohibition. Classification of spin catalysis in biological activation of dioxygen is presented in this review and discussed in connection with known industrial processes. A few important examples are highlighted to illustrate the role of spin effects in O2 binding to myoglobin, glucose oxidases, cytochrome P450, horse reddish peroxidase, and non-heme irone complexes.
[1] Sheldon R. and Kochi J.: Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York 1981.
[2] Sheldon R.: [in:] Barton D. et al. (Eds.), The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Plenum Press, New York 1993.
[3] Minaev B.: Russ. Chem. Rev., 2007, 76, 1039.
[4] Shaik S., Kumar D., de Visser S. and Altun A.: Chem. Rev., 2005, 105, 2279.
[5] Meunier B. and Bernadou J.: Top. Catal., 2002, 21, 47.
[6] Meunier B., de Visser S. and Shaik S.: Chem. Rev., 2004, 104, 3947.
[7] Simandi L.: Catalytic Activation of Dioxygen by Metal Complexes, Kluwer, Amsterdam 1992.
[8] Chanon M., Julliard M., Santamaria J. and Chanon F.: New J. Chem., 1992, 16, 171.
[9] Mars P. and van Krevelen D.: Chem. Eng. Sci., Spec. Suppl., 1954, 3, 41.
[10] Stern E.: J. Chem. Soc., Chem. Commun., 1970, 736.
[11] Sheldon R.: J. Chem. Soc., Chem. Commun., 1971, 788.
[12] Drago R.: Coord. Chgem. Rev., 1992, 117, 185.
[13] White A., Handler P., Smith E. et al.: Principles of Biochemistry, 5th edn. McGraw-Hill Book Co., New York 1978.
[14] Stryer L.: Biochemistry, 4th edn. Freeman, New York 1995, p. 152.
[15] Lane N.: Oxygen: The Molecule that Made the World. Oxford University Press, Oxford 2002.
[16] Sawyer D.: Oxygen Chemistry. Oxford University, New York 1991.
[17] Міnaev B., Міnaevа V. and Vasenko О.: Ukrainica Bioorganica Acta, 2007, 5, 24.
[18] Міnaev B. and Міnaevа V.: Ukrainica Bioorganica Acta. 2008, 6, 56.
[19] Shaik S., de Visser S. and Kumar D.: J. Biol. Inorg. Chem., 2004, 9, 661.
[20] Loew G. and Harris D.: Chem. Rev., 2000, 100, 407.
[21] Minaev B. and Agren H.: Collect. Czech. Chem. Commun. 1995, 60, 339.
[22] Minaev B. and Agren H.: Int. J. Quant. Chem. 1996, 57, 510.
[23] Poli P. and Harvey J.: Chem. Soc. Rev. 2003, 32, 1.
[24] Harvey J.: Faraday Discuss., 2004, 127, 165.
[25] Strickland N. and Harvey J.: J. Phys. Chem. B, 2007, 111, 841.
[26] Minaev B. and Lunell S.: Zeitschr. fur Phys. Chemie, 1993, 182, 263.
[27] Minaev B.: RIKEN Review, 2002, 44, 147.
[28] Prabhakar R., Siegbahn P., Minaev B. and Agren H.: J. Phys. Chem. B, 2002, 106, 3742.
[29] Blomberg L., Blomberg M. and. Siegbahn P.: J. Inorg. Biochem., 2005, 99, 949.
[30] Franzen S.: Proc. Natl. Acad. Sci. USA, 2002, 99, 16754.
[31] Jensen K. and Ryde U.: J. Biological Chem., 2004, 279, 14561.
[32] Prabhakar R., Siegbahn P. and Minaev B.: Biochim. et Biophysica Acta, 2003, 1647, 173.
[33] Prabhakar R., Siegbahn P., Minaev B. and Agren H.: J. Phys. Chem. B, 2004, 108, 13882.
[34] Minaev B.: J. Mol. Catalysis A, 2001, 171, 53.
[35] Minaev B. and Agren H.: J. Mol. Catalysis A. 1999, 149, 179.
[36] Minaev B.: Bull. Polish Acad. Sci. Chem., 2001, 49, 27.
[37] Minaev B.: Bull. Polish Acad. Sci. Chem., 2000, 48, 131.
[38] Daniel C., Guillaumont D., Ribbing C. and Minaev B.: J. Phys. Chem. A, 1999, 103, 5766.
[39] Decker A. and Solomon E.: Curr. Opin. Chem. Biol., 2005, 9, 152.
[40] Rohde J.-U., In J.-H., Lim M. et al.: Science, 2003, 299, 1037.
[41] Minaev B.: Spectrochim. Acta A, 2004, 60, 1027.
[42] Afanasyeva M., Taraban M., Purtov P. et al.: J. Am. Chem. Soc., 2006, 128, 8651.
[43] Minaev B., Bozhko N. and Evtuhov Yu.: Visnyk CDTU, 2005, 4, 176.
[44] Minaev B., Lyzhenkova I. and Minaevа V.: Theor. Experim. Chem., 1999, 35, 258.
[45] Davydov R., Osborne R., Kim S. et al.: Biochem., 2008, 47, 5147.
[46] Woggon W.: Acc. Chem. Res., 2008, 38, 127.
[47] De Visser S.: J. Am. Chem. Soc., 2006, 128, 15809.
[48] Ullrich V. and Staudinger H.: [in:] Block K. (Ed.), Biological and Chemical Aspects of Monooxygenases. Maruzen, Tokyo 1966.
[49] Frisch M., Trucks G., Schlegel H. et al.: Gaussian 03, Revision B. 03, Gaussian Inc., Pittsburg, PA, 2003.
[50] Minaev B.: Ukr. Biochem. Zh., 2009, 81, 5.
[51] Springer B., Sligar S., Olson J. and Philips G.: Chem. Rev., 1994, 94, 699.
[52] Friedman J. and Campbell B.: Structural Dynamics and Reactivity in Hemoglobin. Springer, New York 1987.
[53] Petrich J., Poyart C. and Martin J.: Biochemistry, 1988, 27, 4049.
[54] Minaev B., Minaevа V., Obushko O. and Hovorun D.: Biopolymers and Cell, 2009, 25, 1.
[55] Minaev B., Minaev A. and Hovorun D.: Biopolymers and Cell, 2007, 23, 519.
[56] Schweitzer C. and Schmidt R.: Chem. Rev., 2003, 103, 1685.
[57] Minaev B., Minaevа V. and Evtuhov Yu.: Int. J. Quant. Chem., 2008, 108, 500.
[58] Minaev B.: J. Mol. Structure (THEOCHEM), 1989, 183, 207.
[59] Minaev B.: Int. J. Quantum Chem., 1980, 89, 367.
[60] Bassan A., Blomberg M., Siegbahn P. and Que L.: J. Am. Chem. Soc., 2002, 124, 11056.
[61] Shan X.and Que L.: J. Inorg. Biochem., 2006, 100, 421.
[62] Groves J.: J. Inorg. Biochem., 2006, 100, 434.
[63] Decker A., Clay M. and Solomon E.: J. Inorg. Biochem., 2006, 100, 697.
[64] Haber F. and Weiss J.: Proc. Royal Soc. London, 1934, 147, 332.
[65] Bray W. and Gorin M.: J. Am. Chem. Soc., 1932, 54, 2124.
[66] Kremer M.: J. Phys. Chem. A, 2003, 107, 1734.
[67] Ensing B., Buda F., Gribnau M. and Baerends E.: J. Am. Chem. Soc., 2004, 126, 4355.
[68] Minaev B., Minaevа V. and Agren H.: J. Phys. Chem. A, 2009, 113, 726.
[69] Kukhar V.: Cataliz and Neftekhimiya. 2007, 15, 3.