Survey of relations of chemical constituents in polymer-based materials with brittleness and its associated properties

2016;
: pp. 595 – 600
https://doi.org/10.23939/chcht10.04si.595
Received: September 12, 2016
Revised: September 24, 2016
Accepted: October 02, 2016
Authors: 

Witold Brostow and Haley E. Hagg Lobland

Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Department of Physics, University of North Texas, 3940 North Elm Street, Denton, TX 76207, USA wkbrostow@gmail.com, haleylobland@gmail.com; https://LAPOM.unt.edu/

The property of brittleness for polymers and polymer-based materials (PBMs) is an important factor in determining the potential uses of a material. Brittleness of polymers may also impact the ease and modes of polymer processing, thereby affecting economy of production. Brittleness of PBMs can be correlated with certain other properties and features of polymers; to name a few, connections to free volume, impact strength, and scratch recovery have been explored. A common thread among all such properties is their relationship to chemical composition and morphology. Through a survey of existing literature on polymer brittleness specifically combined with relevant reports that connect additional materials and properties to that of brittleness, it is possible to identify chemical features of PBMs that are connected with observable brittle behavior. Relations so identified between chemical composition and structure of PBMs and brittleness are described herein, advancing knowledge and improving the capacity to design new and to choose among existing polymers in order to obtain materials with particular property profiles.

[1] Brostow W., Hagg Lobland H.E. and Narkis M.: J. Mater. Res., 2006, 21, 2422.
[2] Flory P.: Selected Works, v. 3. Stanford University Press, CA 1985.
[3] Hartmann B. and Haque M.: J. Appl. Phys., 1985, 58, 2831.
[4] Van der Waals J.: Doctor in de Wis- en Natuurkunde Academisch Proefschrift, Hoogeschool te Leiden, A .W. Sijthoff, Leiden 1873.
[5] Brostow W., Bujard B., Cassidy P. et al.: Mater. Res. Innovat., 2002, 6, 7.
[6] Brostow W., Damarla G., Howe J. and Pietkiewicz D.: e-Polymers, 2004, 025, 1.
[7] Brostow W. and Hagg Lobland H.E.: Polym. Eng. Sci., 2008, 49, 1982.
[8] Brostow W. and Hagg Lobland H.E.: J. Mater. Sci., 2010, 45, 242.
[9] Brostow W., Hagg Lobland H.E.: Materials: Introduction and Applications, Wiley, New York 2017.
[10] Nielsen L. and Landel R.: Mechanical Properties of Polymers and Composites, 2nd edn. Marcel Dekker, NewYork - Basel - Hong Kong 1994.
[11] Brostow W., Hagg Lobland H.E. and Khoja S.: Mater. Lett., 2015, 159, 478.
[12] Kalogeras I. and Hagg Lobland H.E: J. Mater. Ed., 2012, 34, 69.
[13] Wilson Jr., Smith B., Macdonald J. et al.: Polym. Degrad. & Stabil., 2004, 84, 439.
[14] Dorigato A., Pegoretti A., Fambri L. et al.: Exp. Polym. Lett., 2011, 5, 23.
[15] Chen J., Wang M., Li J. et al.: Eur. Polym. J., 2009, 45, 3269.
[16] Pedrazzoli D., Pegoretti A. and Kalaitzidou K.: Polym. Composites., 2016, 37, 2018.
[17] Brostow W., Datashvili T., Geodakyan J. and Lou J.: J. Mater. Sci., 2011, 46, 2445.
[18] Szymczyk A., Roslaniec Z., Zenker M. et al.: Exp. Polym. Lett., 2011, 5, 977.
[19] Brostow W., Broza G., Datashvili T. et al.: J. Mater. Res., 2012, 27, 1815.
[20] Carrion F., Espejo C., Sanes J. and Bermudez M.: Compos. Sci. & Tech., 2010, 70, 2160.
[21] Kopczynska A. and Ehrenstein G.: J. Mater. Ed., 2007, 29, 325.
[22] Keten S., Xu Z., Ihle B. and Buehler M.: Nature Mater., 2010, 9, 359.
[23] Pourjavaheri F., Jones O., Mohaddes F. et al.: 74th Ann. Tech. Conf. of the Society of Plastics Engineers, Indianapolis 2016, 432.
[24] Brostow W.: Pure & Appl. Chem., 2009, 81, 417.
[25] Bouville F., Maire E., Meille S. et al.: Nature Mater., 2014, 13, 508.
[26] Brostow W., Brozynski M., Datashvili T. and Olea-Mejia O.: Polymer Bull., 2011, 59, 1671.