Optical properties of hydrogels filled with dispersed nanoparticles

2017;
: pp. 449–453
Received: October 26, 2016
Revised: January 05, 2017
Accepted: March 12, 2017
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Uppsala University, Division of Nanotechnology and Functional Materials
5
Max Planck Institute for Polymer Research, Fraunhofer ICT-IMM
6
Max Planck Institute for Polymer Research
7
Lviv Polytechnic National University
8
Lviv Polytechnic National University

This paper reports on a study of novel heterohydrogel materials with regular inclusions of the dispersed phase such as polystyrene latex nanoparticles. Synthesized 3D hydrogel matrices contain a balanced number of cross-links and a defined amount of polystyrene nanoparticles with 50 or 85 nm in radius. This study has shown that the obtained hydrogel matrices are capable of changing the swelling degree and their optical properties depending on the size and concentration of the dispersed nanoparticles. The results of the performed studies revealed that the synthesized 3D hydrogels are sensitive for even small changes of glucose concentration and therefore are very promising materials for biosensors.

[1] Gough D., Armour J., Baker D.: Diabetologia, 1997, 40, 1025.

[2] Kim A., Mujumdar S., Siegel R.: Chemosensors, 2014, 2, 1. https://doi.org/10.3390/chemosensors2010001

[3] Koschwanez H., Reichert W.: Biomaterials, 2007, 28, 3687. https://doi.org/10.1016/j.biomaterials.2007.03.034

[4] Gough D., Kumosa L., Routh T. et al.: Science Transl. Med., 2010, 2, 39. https://doi.org/10.1126/scitranslmed.3001148

[5] Caló E., Khutoryanskiy V.: Eur. Polym. J., 2015, 65, 252. https://doi.org/10.1016/j.eurpolymj.2014.11.024

[6] Ahmed E.: J. Adv. Res., 2015, 6, 105. https://doi.org/10.1016/j.jare.2013.07.006

[7] Koetting C., Peters J., Steichen S. et al.: Mat. Sci. Eng. Res., 2015, 93, 1. https://doi.org/10.1016/j.mser.2015.04.001

[8] Cameron A.: Nat. Mater., 2008, 7, 767. https://doi.org/10.1038/nmat2281

[9] Valuev I., Vanchugova L., Valuev L.: Polym. Sci. A, 2011, 53, 385. https://doi.org/10.1134/S0965545X11050099

[10] Alexeev V., Das S., Finegold D. et al.: Clin. Chem., 2004, 50, 2353. https://doi.org/10.1373/clinchem.2004.039701

[11] Lee Y.-J., Pruzinsky S., Braun P.: Langmuir, 2004, 20, 3096. https://doi.org/10.1021/la035555x

[12] Horgan A., Marshall A., Kew S. et al.: Biosens. Bioelectron., 2006, 21, 1838. https://doi.org/10.1016/j.bios.2005.11.028

[13] Kabilan S., Marshall A., Certain N. et al.: Biosens. Bioelectron., 2005, 20, 1602. https://doi.org/10.1016/j.bios.2004.07.005

[14] Varvarenko S., Voronov A., Samaryk V. et al.:  React. Funct. Polym., 2010, 70, 647. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014

[15] Samaryk V., Voronov A., Tarnavchyk I. et al.: J. Appl. Polym. Sci., 2009, 114, 2204. https://doi.org/10.1002/app.30426

[16] Samaryk V., Voronov A., Tarnavchyk I. et al.: Prog. Org. Coat., 2012, 74, 687.  https://doi.org/10.1016/j.porgcoat.2011.07.015

[17] Varvarenko S., Samaryk V., Nosova N. et al.: Macromol. Symp., 2010, 298, 147. https://doi.org/10.1002/masy.201000037

[18] Musyanovych A., Rossmanith R., Tontsch C. et al.: Langmuir, 2007, 23, 5367. https://doi.org/10.1021/la0635193

[19] Livencev N.: Physica. Vysshaya Shkola, Moskva 1974.