Fluorine-Containing Siloxane Based Polymer Electrolyte Membranes

2019;
: pp. 444 - 450
1
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
2
Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
3
University of Bialystok
4
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
5
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University

The hydrosilylation reaction of 2,4,6,8-tetrahydro-2,4,6,8-tetramethylcyclotetrasiloxane (D4H) with 2,2,3,3-tetrafluoropropyl acrylate and vinyltriethoxysilane in the presence of platinum catalysts (platinum hydrochloric acid, Karstedt’s catalysts and Pt/C (10%) at 323 K) has been carried out and corresponding addition adduct (D4R,R‘) has been obtained. The synthesized product D4R,R was analyzed by FT-IR, 1H, 13C, and 29Si NMR spectroscopy. Sol-gel reactions of D4R,R doped with lithium trifluoromethylsulfonate (triflate) have been studied and solid polymer electrolyte membranes have been obtained. Electric conductivity of solid polymer electrolyte membranes has been determined via electrical impedance spectroscopy.

  1. Muldoon J., Bucur C., Boaretto N. et al.: Polym. Rev., 2015, 55, 208. https://doi.org/10.1080/15583724.2015.1011966
  2. Sun Ch., Liu J., Gong Yu. et al.: Nano Energ., 2017, 33, 363. https://doi.org/10.1016/j.nanoen.2017.01.028
  3. Goodenough J., Park K-S.: J. Am. Chem. Soc., 2013, 135, 1167. https://doi.org/10.1021/ja3091438
  4. Grünebaum M., Hiller M., Jankowsky S. et al.: Prog. in Sol. State Chem., 2014, 42, 85. https://doi.org/10.1016/j.progsolidstchem.2014.04.004
  5. [5] ue L., Ma J., Zhang J. et al.: Energ. Storage Mater., 2016, 5, 139. https://doi.org/10.1016/j.ensm.2016.07.003
  6. Kim D.-G., Shim J.,Lee J. et al.: Polymer, 2013, 54, 5812. https://doi.org/10.1016/j.polymer.2013.08.049
  7. Ben youcef H., Garcia-Calvo O., Lago N. et al.: Electrochim. Acta, 2016, 220, 587. https://doi.org/10.1016/j.electacta.2016.10.122
  8. Liu T.-M., Saikia D., Ho S.-Y. et al.: RSC Adv., 2017, 7, 20373. https://doi.org/10.1039/C7RA01542A
  9. Boaretto N., Joost Ch., Seyfried M. et al.: J. Power Sources, 2016, 325, 427. https://doi.org/10.1016/j.jpowsour.2016.06.034
  10. Tatrishvili T., Titvinidze G., Pirckheliani N. et al.: Oxid. Commun., 2015, 2, 776.
  11. [11] ukbaniani O., Brostow W., Aneli J. et al.: J. Pure Appl. Chem., 2018, 90, 989. https://doi.org/10.1515/pac-2017-0805
  12. Iwahara T., Kusakabe M., Chiba M., Yonezawa K.: J. Polym. Sci. A, 1993, 31, 2617. https://doi.org/10.1002/pola.1993.080311023
  13. Spindler R., Shriver D.: Macromolecules, 1988, 21, 648. https://doi.org/10.1021/ma00181a019
  14. Mukbaniani O., Aneli J., Tatrishvili T. et al.: E-polymers, 2012, 089, 1. https://doi.org/10.1021/ma00181a019
  15. Zhang L., Zhang Z., Harring S. et al.: J. Mater. Chem., 2008, 18, 3713. https://doi.org/10.1039/b806290k
  16. Karan N., Pradhan D., Thomas R. et al.: Solid State Ionics, 2008, 179, 689. https://doi.org/10.1016/j.ssi.2008.04.034
  17. Ziman J.: Principles of the Theory of Solids, Cambridge University Press, Cambridge 1964. https://doi.org/10.1017/CBO9781139644075