Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix

2021;
: pp. 198 - 204
1
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
2
Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
3
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
4
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University

Hydrosilylation reactions of 2,4,6,8-tetrahydro-2,4,6,8-tetramethylcyclotetrasiloxane (D4H) with 2,2,3,3,4,4,5,5-octafluoropentyl acrylate at 1:4.2 ratio of initial compounds catalysed by platinum catalysts have been studied and corresponding adduct D4R' has been obtained. Ring opening polymerization of D4R in the presence of dry potassium hydroxide has been carried out and comb-type polymers with 2,2,3,3,4,4,5,5-octafluoropentyl propionate side groups have been obtained. The synthesized product D4R and polymers were analyzed by FTIR, 1H, 13C, and 29Si NMR spectroscopy. The solid polymer electrolyte membranes have been obtained via sol-gel reactions of polymers with tetraethoxysilane doped with lithium trifluoromethylsulfonate (triflat) and lithium bis(trifluorosulfonyl)imide. It has been found that the electric conductivity of the polymer electrolyte membranes at room temperature changes in the range of (1.9•10-6) – (5.9•10-10) S•cm-1.

  1. Di Noto V., Lavina S., Giffin G. et al.: Electrochim. Acta, 2011, 57, 4. https://doi.org/10.1016/j.electacta.2011.08.048
  2. Armand M.: Solid State Ionics, 1983, 9-10, 745. https://doi.org/10.1016/0167-2738(83)90083-8
  3. Muldoon J., Bucur C., Boaretto N. et al.: Polym. Rev., 2015, 55, 208. https://doi.org/10.1080/15583724.2015.1011966
  4. Baudry P., Lascaud S., Majastre H., Bloch D.: J. Power Sources, 1997, 68, 432. https://doi.org/10.1016/S0378-7753(97)02646-3
  5. Kerr J.: Polymeric Electrolytes: an Overview [in:] Nazri G., Pistoia G. (Eds.), Lithium Batteries. Springer US, Boston, MA 2003, 575-622.
  6. Sun C., Liu J., Gong Y. et al.: Nano Energy, 2017, 33, 363. https://doi.org/10.1016/j.nanoen.2017.01.028
  7. Goodenough J., Kim Y.: Chem. Mater., 2010, 22, 587. https://doi.org/10.1021/cm901452z
  8. Yue L., Ma J., Zhang J. et al.: Energy Storage Mater., 2016, 5, 139. https://doi.org/10.1016/j.ensm.2016.07.003
  9. Ben Youcef H., Garcia-Calvo O., Lago N. et al.: Electrochim. Acta, 2016, 220, 587. https://doi.org/10.1016/j.electacta.2016.10.122
  10. Kang Y., Lee W., Hack Suh D., Lee C.: J. Power Sources, 2003, 119-121, 448e. https://doi.org/10.1016/S0378-7753(03)00189-7
  11. Nugent J., Moganty S., Archer L.: Adv. Mater., 2010, 22, 3677. https://doi.org/10.1002/adma.201000898
  12. Saikia D., Wu H., Lin C. et al.: Polymer, 2012, 53, 6008. https://doi.org/10.1016/j.polymer.2012.11.012
  13. Pan Y., Saikia D., Fang J. et al.: RSC Adv., 2014, 4, 13293. https://doi.org/10.1039/C3RA47695B
  14. Chu Y., Liu Z., Saikia D. et al.: Ionics, 2015, 21, 2523. https://doi.org/10.1007/s11581-015-1425-z
  15. Yuan W., Shen T., Liu X., Ren J.: Mater. Lett., 2013, 111, 9. https://doi.org/10.1016/j.matlet.2013.08.062
  16. Iwahara T., Kusakabe M., Chiba M., Yonezawa K.: J. Polym. Sci. A, 1993, 31, 2617. https://doi.org/10.1002/pola.1993.080311023
  17. https://en.wikipedia.org/wiki/Infrared
  18. Socrates G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley&Sons 2001.
  19. Stuart B.: Infrared Spectroscopy: Fundamentals and Applications. John Wiley&Sons 2004.
  20. Zhang L., Zhang Z., Harring S. et al.: J. Mater. Chem., 2008, 18, 3713. https://doi.org/10.1039/B806290K
  21. Ziman J.: Principles of the Theory of Solids. Cambridge University Press 1964.