A Methodology Study of Hydrophosphonylation of Aldehydes Derivatives with H6P2W18O62•14H2O as a Catalyst

2020;
: pp. 154 - 160
1
Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University
2
Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University
3
Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar Annaba University
4
Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department, Badji Mokhtar-Annaba University

A catalytic process for hydrophosphonylation of aldehydes with H6P2W18O62•14H2O has been developed in this paper. Various aldehydes were reacted with diethylphosphite in the presence of 1 % of heteropolyacids (HPAs) as a catalyst to generate the α-hydroxyphosphonates. All the synthesized compounds were systematically characterized by IR, 1H NMR, 13C NMR, and 31P NMR. Simple and mild method, short reaction time, solvent-free conditions, availability and reusability of the catalyst are the main advantages of this procedure.

  1. Corbridge D.: Phosphorus: An Outline of its Chemistry, Biochemistry and Technology, 5th edn. Elsevier, Amesterdam 1995.
  2. Francis M., Martodam R.: Chemical, Biochemical and Medicinal Properties of the Diphosphonates [in:] Hilderbrand R. (Ed), The Role of Phosphonates in Living Systems. CRC Press, Boca Raton 1983, 55.
  3. Neyts J., De Clercq E.: Antimicrob. Agents Chemother., 1997, 41, 2754.
  4. Lee M., Fong E., Singer F., Guenette R.: Cancer. Res., 2001, 61, 2602.
  5. Fleisch H.: Endocr. Rev., 1998, 19, 80. https://doi.org/10.1210/edrv.19.1.0325
  6. Naidu K., Kumar K., Arulselvan P. et al.: Arch. Pharm., 2012, 345, 957. https://doi.org/10.1002/ardp.201200192
  7. Kafarski P., Lejczak B.: J. Mol. Catal. B, 2004, 29, 99. https://doi.org/10.1016/j.molcatb.2003.12.013
  8. Tao M., Bihovsky R., Wells G., Mallamo J.: J. Med. Chem., 1998, 41, 3912. https://doi.org/10.1021/jm980325e
  9. Zheng X., Nair V.: Tetrahedron, 1999, 55, 11803. https://doi.org/10.1016/S0040-4020(99)00681-X
  10. Kaboudin B.: Tetrahedron Lett., 2003, 44, 1051. https://doi.org/10.1016/S0040-4039(02)02727-2
  11. Firouzabadi H., Iranpoor N., Sobhani S., Amoozgar Z.: Synthesis, 2004, 11, 1771. https://doi.org/10.1055/s-2004-829124
  12. Firouzabadi H., Iranpoor N., Sobhani S.: Synth. Commun., 2004, 34, 1463. https://doi.org/10.1081/SCC-120030697
  13. Lorga B., Eymery F., Savignac P.: Tetrahedron, 1999, 55, 2671. https://doi.org/10.1016/S0040-4020(99)00037-X
  14. Abramov V.: Dokl. Akad. Nauk SSSR, 1950, 73, 487.
  15. Pudovik A., Arbuzov B.: Dokl. Akad. Nauk SSSR, 1950, 73, 327.
  16. Gawron O., Grelecki C., Reilly W., Sands J.: J. Am. Chem. Soc., 1953, 75, 3591. https://doi.org/10.1021/ja01110a508
  17. Kumar K., Reddy C., Reddy M. et al.: Org. Commun., 2012, 5, 50.
  18. Alexander C., Albiniak P., Gibson L.: Phosphorus Sulfur,2000, 167, 205. https://doi.org/10.1080/10426500008082399.
  19. Smaardijk A., Noorda S., Bolhuis F.,Wynberg H.: Tetrahedron Lett., 1985, 26, 493. https://doi.org/10.1016/S0040-4039(00)61920-2
  20. Tajbakhsh M., Heydari A., Khalizadeh M. et al.: Synlett., 2007, 15, 2347. https://doi.org/10.1055/s-2007-985595
  21. Blazis V., Koeller K., Spilling C.: J. Org. Chem., 1995, 60, 931. https://doi.org/10.1021/jo00109a025
  22. Saito B., Egami H., Katsuki T.: J. Am. Chem.Soc., 2007, 129, 1978. https://doi.org/10.1021/ja0651005
  23. Textier-Boullet F., Lequitte M.: Tetrahedron. Lett., 1986, 27, 3515. https://doi.org/10.1016/S0040-4039(00)84837-6
  24. Smahi A., Solhy A., Tahir R. et al.: Catal. Commun., 2008, 9, 2503.https://doi.org/10.1016/j.catcom.2008.07.005
  25. Baraldi P., Guarnieri M., Moroder F. et al.: Synthesis, 1982, 8, 653. https://doi.org/10.1055/s-1982-29888
  26. Keglevich G.,Toth V., Drahos L.: Heteroatom. Chem., 2011, 22, 15. https://doi.org/10.1002/hc.20649
  27. Martinez-Castro E., Lopez O., Maya I. et al.: Green Chem., 2010, 12, 1171. https://doi.org/10.1039/C0GC00026D
  28. Jeanmaire T., Hervaud Y., Boutevin B.: Phosphorus Sulfur, 2002, 177, 1137. https://doi.org/10.1080/10426500211718
  29. Sardarian A., Kaboudin B.: Synth. Commun., 1997, 27, 543. https://doi.org/10.1080/00397919708003324
  30. Rasheed S., Venkata Ramana K., Madhava G. et al.: Phosphorus Sulfur, 2014, 189, 606. https://doi.org/10.1080/10426507.2013.843002
  31. Feng D.,Chen R.,Huang Y., Song H.: Heteroatom. Chem., 2007, 18, 347. https://doi.org/10.1002/hc.20304
  32. Kharasch M., Mosher R., Bengelsdorf I.: J. Org. Chem., 1960, 25, 1000. https://doi.org/10.1021/jo01076a035
  33. Samanta S.,Zhao C.: J. Am. Chem. Soc., 2006, 128, 7442. https://doi.org/10.1021/ja062091r
  34. Pope M.: Heteropoly and IsopolyOxometalates. Springer Verlag, NewYork 1983.
  35. Bouzina A., Aouf N., Berredjem M.: Res. Chem. Intermed., 2016, 42, 5993. https://doi.org/10.1007/s1116
  36. Belhani B., Berredjem M., Le Borgne M. et al.: RSC Adv., 2015, 5, 39324. https://doi.org/10.1039/C5RA03473F
  37. Boughaba S., Bouacida S., Aouf Z. et al.: Curr. Org. Chem, 2018, 22, 1335. https://doi.org/10.2174/1385272822666180404145804
  38. Rao U., Sundar S., Prasad S. et al.: Bull. Korean Chem. Soc., 2011, 32, 3343. https://doi.org/10.5012/bkcs.2011.32.9.3343
  39. Ciabrini J.,Contant R., Fruchart J.: Polyhedron,1983, 2, 1229. https://doi.org/10.1016/S02775387(00)84366-1
  40. Angelini T., Bonollo S., Lanari D. et al.: Org. Biomol. Chem., 2013, 11, 5042. https://doi.org/10.1039/C3OB40767E
  41. Ramesh K., Madhav B., Murthy S., NageswarY.: Synth. Commun., 2012, 42, 258. https://doi.org/10.1080/00397911.2010.523492
  42. Zhou X., Liu X., Yang X. et al.: Angew. Chem. Int. Ed., 2008, 47, 392. https://doi.org/10.1002/anie.200704116
  43. Kumar A., Jamwal S., Khan S. et al.: Phosphorus Sulfur, 2017, 192, 381. https://doi.org/10.1080/10426507.2016.1247085