Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies

2020;
: pp. 362 - 371

This study investigates the capability of Thuja occidentalis leaves carbon powder (TOLC) as a viable adsorbent for the expulsion of chromium(VI) from aqueous solutions. By batch mode, the removal percentage of Cr(VI) is observed to be pH perceptive and furthermore relies upon the time of equilibration, amount of the TOLC adsorbent and Cr(VI) concentration. TOLC adsorbent before and after adsorption of Cr(VI) was characterized with FTIR, SEM and EDX. Adsorption isotherm results divulge that the Langmuir model was a better fit. The kinetic studies divulge that the pseudo-second-order model was the best fit. TOLC adsorbent can be easily regenerated and utilised for several adsorption/desorption cycles.

  1. Djebbar M., Djafri F.: Chem. Chem. Technol., 2018, 12, 272. https://doi.org/10.23939/chcht12.02.272
  2. Mehdipour S., Vatanpour V., Kariminia H.: Desalination, 2015, 362, 84. https://doi.org/10.1016/j.desal.2015.01.030
  3. Skiba E., Kobyłecka J., Wolf W.: Environ. Pollut., 2017, 220B, 882. https://doi.org/10.1016/j.envpol.2016.10.072
  4. Wu L., Liao L., Lv G. et al.: J. Hazard. Mater., 2013, 254, 277. https://doi.org/10.1016/j.jhazmat.2013.03.009
  5. Lv X., Xu J., Jiang G. et al.: J. Colloid Interface Sci., 2012, 369, 460. https://doi.org/10.1016/j.jcis.2011.11.049
  6. Cheng Q., Wang C., Doudrick K., Chan C.: Appl. Catal. B, 2015, 176-177, 740. https://doi.org/10.1016/j.apcatb.2015.04.047
  7. Sharma D., Forster C.: Bioresour. Technol., 1995, 52, 261. https://doi.org/10.1016/0960-8524(95)00035-D
  8. Focardi S., Pepi M., Focardi S.: Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. [in:] R. Chamy (Ed.), Biodegradation – Life of Science. InTechOpen 2013. https://doi.org/10.5772/56365
  9. Miretzky P., Cirelli A.: J. Hazard. Mater., 2010, 180, 1. https://doi.org/10.1016/j.jhazmat.2010.04.060
  10. Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
  11. Sereshti H., Farahani M., Baghdadi M.: Talanta, 2016, 146, 662. https://doi.org/10.1016/j.talanta.2015.06.051.
  12. Crisostomo C., Lima F., Dias R. et al.: Water Air Soil Pollut., 2016, 227, 51. https://doi.org/10.1007/s11270-016-2747-9
  13. Teh C., Budiman P., Shak K., Wu T.: Ind. Eng. Chem. Res., 2016, 55, 4363. https://doi.org/10.1021/acs.iecr.5b04703
  14. Kazeminezhad I., Mosivand S.: J. Magn. Magn. Mater., 2017, 422, 84. https://doi.org/10.1016/j.jmmm.2016.08.049
  15. Ronda A., Della Zassa M., Martín-Lara M. et al.: J. Hazard. Mater., 2016, 308, 285. https://doi.org/10.1016/j.jhazmat.2016.01.045
  16. Choi K., Lee S.., Ock J. et al.: Nature, 2018, 8, 1438. https://doi.org/10.1038/s41598-018-20017-9
  17. Guo Z., Zhang J., Liu H., Kang Y.: Powder Technol., 2017, 318, 459. https://doi.org/10.1016/j.powtec.2017.06.024
  18. Huang M., Wang Z., Liu S.: J. Environ. Chem. Eng., 2016, 4, 1555. https://doi.org/10.1016/j.jece.2016.02.019
  19. Shashikant M., Trupti Nagendra P.: J. Inst. Eng. India Ser. A, 2015, 96, 237. https://doi.org/10.1007/s40030-015-0124-0
  20.  Song D., Pan K., Tariq A. et al.: PLoS One, 2016, 11(12), e0167037. https://doi.org/10.1371/journal.pone.0167037.
  21. Kumar M., Tamilarasan R.: Arabian J. Chem., 2013, 10, S1567. https://doi.org/10.1016/j.arabjc.2013.05.025
  22. Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
  23. Yang J., Yu M., Chen W.: J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054
  24. Gueye M., Richardson Y., Kafack F., Blin J.: J. Environ. Chem. Eng., 2014, 2, 273. https://doi.org/10.1016/j.jece.2013.12.014
  25. Cronje K., Chetty K., Carsky M. et al.: Desalination, 2011, 275, 276. https://doi.org/10.1016/j.desal.2011.03.019
  26. Oliveira R., Hammer P., Guibal E. et al.: Chem. Eng. J., 2014, 239, 381. https://doi.org/10.1016/j.cej.2013.11.042
  27. The Gymnosperm Database 2018. https://www.conifers.org/cu/Thuja_occidentalis.php
  28. Singanan M., Peters E.: J. Environ. Chem. Eng., 2013, 1, 884. https://doi.org/10.1016/j.jece.2013.07.030
  29. Singanan M.: Science Asia, 2011, 37, 115. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115
  30. Mengistie A., Siva Rao T., Prasada Rao A.: Global J. Sci. Frontier Res. Chem., 2012, 12, 5.
  31. Esposito A., Pagnanelli F., Lodi A. et al.: Hydrometallurgy, 2001, 60, 129. https://doi.org/10.1016/S0304-386X(00)00195-X
  32. Liu C., Liang X., Liu J. et al.: J. Colloid Interface Sci., 2017, 488, 294. https://doi.org/10.1016/j.jcis.2016.11.013
  33. Srivastava V., Mall I., Mishra I.: J. Hazard. Mater., 2006, B134, 257. https://doi.org/10.1016/j.jhazmat.2005.11.052
  34. Hsua N-H., Wanga S-L., Liaoa Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
  35. Rangabhashiyam S., Selvaraju N.: J. Mol. Liq., 2017, 207, 39. https://doi.org/10.1016/j.molliq.2015.03.018
  36. Huang C-P., Wu M-H.: Water Res., 1977, 11, 673. https://doi.org/10.1016/0043-1354(77)90106-3
  37. Hamadi N., Chen X., Farid M., Lu M.: Chem. Eng. J., 2001, 84, 95. https://doi.org/10.1016/S1385-8947(01)00194-2
  38. GuptaV., Ali I., SalehT. et al.: Environ. Sci. Pollut. Res., 2013, 20, 1261. https://doi.org/10.1007/s11356-012-0950-9
  39. Rai M., Shahi G., Meena V. et al.: Res. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011
  40. Langmuir I.: J. Am. Chem. Soc., 1918, 40, 1361. https://doi.org/10.1021/ja02242a004
  41. Frendlich H.: J. Phys. Chem., 1906, 57, 385.
  42. Sujitha R., Ravindhranath K.: J. Fluorine Chem., 2017, 193, 58. https://doi.org/10.1016/j.jfluchem.2016.11.013
  43. Masoud M., El-Saraf W., Abdel-Halim A. et al.: Arabian J. Chem., 2016, 9, S1590. https://doi.org/10.1016/j.arabjc.2012.04.028
  44. Kilic M., Apaydin-Varol E., Pütün A.: J. Hazard. Mater., 2011, 189, 397. https://doi.org/10.1016/j.jhazmat.2011.02.051
  45. Dundar M., Nuhoglu C., Nuhoglu Y.: J. Hazard. Mater., 2008, 151, 86. https://doi.org/10.1016/j.jhazmat.2007.05.055
  46. Huang H., Tang L., Wu C.: Environ. Sci. Technol., 2003, 37, 4463. https://doi.org/10.1021/es034193c
  47. Abdel Ghani N., Hegazy A., El-Chaghaby G.: Int. J. Environ. Sci. Technol., 2009, 6, 243. https://doi.org/10.1007/BF03327628
  48. Chen Y., An D., Sun S. et al.: Materials, 2018, 11, 269. https://doi.org/10.3390/ma11020269
  49. Abdolali A., Ngo H., Guo W. et al.: Bioresour. Technol., 2015, 193, 477. https://doi.org/10.1016/j.biortech.2015.06.123
  50. Selvi K., Pattabi S., Kaadirvelu K.K.: Bioresour. Technol., 2001, 80, 87. https://doi.org/10.1016/S0960-8524(01)00068-2
  51. Anandkumar J., Mandal B.: J. Hazard. Mater., 2009, 168, 633. https://doi.org/10.1016/j.jhazmat.2009.02.136
  52. Garg U., Kaur M., Garg V., Sud D.: J. Hazard. Mater., 2007, 140, 60. https://doi.org/10.1016/j.jhazmat.2006.06.056
  53. Aloma I., Rodriguez I., Calero M., Blazquez G.: Desalin. Water Treat., 2014, 52, 5912. https://doi.org/10.1080/19443994.2013.812521
  54. Dakiky M., Khamis M., Manassra A., Mereb M.: Adv. Environ. Res., 2002, 6, 533. https://doi.org/10.1016/S1093-0191(01)00079-X
  55. Rangabhashiyam S., Anu N., Selvaraju N.: Res. J. Chem. Environ, 2014, 18, 30.