Antioxidant Potential of Novel Designed Phenolic Derivatives: Computational Insights

2020;
: pp. 448 - 454
1
Department of Chemistry, Faculty of Science, University of Kelaniya
2
Department of Chemistry, Faculty of Science, University of Kelaniya

Density functional theory calculations were applied for designed phenolic antioxidant derivatives. The reaction enthalpies related to various mechanisms of primary antioxidant action were deliberated in detail. How antioxidant activity of designed phenolic compounds has been perturbed by electron donor and withdrawing substituents present at ortho, meta and para positions, allylic conjugation and the dimerization effect were computed.

  1. Lobo V., Patil A., Phatak A., Chandra N.: Pharm. Rev., 2010, 4, 118. https://doi.org/10.4103/0973-7847.70902
  2. Nimse S., Pal D.: RSC Adv., 2015, 5, 27986. https://doi.org/10.1039/C4RA13315C
  3. Brewer M.: Rev. Food Sci. Food Saf., 2011, 10, 221. https://doi.org/10.1111/j.1541-4337.2011.00156.x
  4. Dizdaroglu M.: Mutat Res. DNAging., 1992, 275, 331. https://doi.org/10.1016/0921-8734(92)90036-O
  5. Mohajeri S., Asemani S.: J. Mol. Struct., 2009, 930, 15. https://doi.org/10.1016/j.molstruc.2009.04.031
  6. Skorna P., Rimarcík J., Poliak P. et al.: Comp. Theor. Chem., 2016, 1077, 32. https://doi.org/10.1016/j.comptc.2015.10.010
  7. Pandithavidana D., Jayawardana S.: Molecules, 2019, 24, 1646. https://doi.org/10.3390/molecules24091646
  8. Mazzone G., Russo N., Toscano M.: Comp. Theor. Chem., 2016, 1077, 39. https://doi.org/10.1016/j.comptc.2015.10.011
  9. Borgohain R., Guha A., Pratihar S., Handique J.: Comp. Theor. Chem., 2015, 1060, 17. https://doi.org/10.1016/j.comptc.2015.02.014
  10. Mulder P., Saastad O., Griller D.: J. Am. Chem. Soc., 1988, 110, 4090. https://doi.org/10.1021/ja00220a088
  11. Bordwell F., Zhang X., Satish A., Cheng J.: J. Am. Chem. Soc., 1994, 116, 6605. https://doi.org/10.1021/ja00094a015
  12. Lind J., Shen X., Eriksen T., Merenyi G.: J. Am. Chem. Soc., 1990, 112, 479. https://doi.org/10.1021/ja00158a002
  13. Bordwell F., Cheng J.: J. Am. Chem. Soc., 1991, 113, 1736. https://doi.org/10.1021/ja00005a042
  14. Brinck T., Haeberlein M., Jonsson M.: J. Am. Chem. Soc., 1997, 119, 4239. https://doi.org/10.1021/ja962931+
  15. Kamat J., Devasagayam T.: Redox Rep., 1999, 4, 179. https://doi.org/10.1179/135100099101534882
  16. Klein E., Lukeš V., Ilcin M.: Chem. Phys., 2007, 336, 51. https://doi.org/10.1016/j.chemphys.2007.05.007
  17. Chandra K., Uchimaru T.: Int. J. Mol. Sci., 2002, 3, 407. https://doi.org/10.3390/i3040407
  18. Klein E., Lukeš V.: J. Phys. Chem. A, 2006, 110, 12312. https://doi.org/10.1021/jp063468i
  19. Mazzone G., Malaj N., Russo N., Toscano M.: Food Chem., 2013, 141, 2017. https://doi.org/10.1016/j.foodchem.2013.05.071
  20. Mazzone G., Malaj N., Galano A., et al..: RSC Adv., 2015, 5, 565. https://doi.org/10.1039/C4RA11733F
  21. Wright J., Johnson E., DiLabio G.: J. Am. Chem. Soc., 2001, 123, 1173. https://doi.org/10.1021/ja002455u
  22. Becke A.: Phys. Rev. A, 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098