Semi-infinite metallic system: QST versus DFT

: pp. 178–185
Received: August 03, 2021
Revised: December 20, 2021
Accepted: January 05, 2022
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

Modeling and investigation of thermodynamic characteristics of spatially-finite  metallic systems is an essential task of modern nanophysics.  We show that the widely used DFT (density functional theory) is less efficient than the QST (quantum-statistical theory) approach.

  1. Hohenberg P., Kohn W.  Inhomogeneous electron gas.  Physical Review.  136 (3B), B864–B871 (1964).
  2. Lang N. D., Kohn W.  Theory of metal surfaces: Charge density and surface energy.  Physical Review B.  1 (12), 4555–4568 (1970).
  3. Theory of the Inhomogeneous Electron Gas.  Edited by Lundqvist S. and March N. H. Springer, Boston, MA (1983).
  4. Mattsson A. E., Kohn W.  An energy functional for surfaces.  The Journal of Chemical Physics.  115 (8), 3441–3443 (2001).
  5. Eguiluz A. G., Heinrichsmeier M., Fleszar A., Hanke W.  First-principles evaluation of the surface barrier for a Kohn–Sham electron at a metal surface.  Physical Review Letters.  68 (9), 1359–1362 (1993).
  6. Fiolhais C., Henriques C., Sarrı́a I., Pitarke J. M.  Metallic slabs: Perturbative treatments based on jellium.  Progress In Surface Science.  67 (1–8), 285–298 (2001).
  7. Dobson J. F., Rose J. H.  Surface properties of simple metals via inhomogeneous linear electronic response. I. Theory.  Journal of Physics C: Solid State Physics.  15 (36), 7429–7456 (1982).
  8. Eguiluz A. G.  Lattice relaxation at an aluminum surface: Self-consistent linear-electronic-response approach.  Physical Review B.  35 (11), 5473–5486 (1987).
  9. Kostrobij P. P., Markovych B. M.  Semi-infinite metal: Perturbative treatment based on semi-infinite jellium.  Condensed Matter Physics.  11 (4), 641–651 (2008).
  10. Kostrobij P. P., Markovych B. M.  Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy.  Physical Review B.  92 (7), 075441 (2015).
  11. Vavrukh M. V., Kostrobij P. P., Markovych B. M.  Basis approach in the theory of multielectron systems. Rastr-7, Lviv (2017), (in Ukrainian).
  12. Acioli P. H., Ceperley D. M.  Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair correlation functions.  Physical Review B.  54 (23), 17199–17207 (1996).
  13. Vakarchuk I. O.  Quantum mechanics.  Ivan Franko National University of Lviv, Lviv (2012), (in Ukrainian).
  14. Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E.  Methods of quantum field theory in statistical physics. Fizmatgiz, Moscow (1962), (in Russian).
  15. Mermin N. D.  Thermal Properties of the Inhomogeneous Electron Gas.  Physical Review.  137 (5A), A1441–A1443 (1965).
  16. Bogolyubov N. N.  Selected works on statistical physics.  Moscow University Press, Moscow (1979), (in Russian).
  17. Kostrobij P. P., Markovych B. M., Polovyi V. Y.  Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric–metal–dielectric structures.  Mathematical Modeling and Computing. 6 (2), 297–303 (2019).
  18. Kostrobij P. P., Markovych B. M.  Effect of Coulomb interaction on chemical potential of metal film.  Philosophical Magazine.  98 (21), 1991–2002 (2018).
Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 178–185 (2022)