State of the Art in the Production of Charcoal: a Review

2021;
: pp. 61 - 73
1
Lviv Polytechnic National University
2
National Technical University «Kharkiv Polytechnic Institute» department of oil, gas and solid fuel processing technology
3
National Technical University “Kharkiv Polytechnic Institute”
4
Carbosur, Calle Mexico F12, Parque Industrial Maquilador Oaxaca 2000, Magdalena Apasco Etla
5
Nader Group Engineering

The use of charcoal (CC) for various industries was analysed; the modern ideas about the factors influencing the process of obtaining CC were considered. The effect of raw materials nature (wood or agricultural wastes) and their characteristics (size, physical properties, chemical composition), as well as carbonization temperature, heating rate, oxygen level and pressure on the yield and quality of CC was described. The existing technologies for charcoal production were analyzed; they were classified according to the type of heating initiation and temperature maintenance during the carbonization process. The Lambiotte, DPC and Carbonex technologies were considered.

  1. Altun N., Hiçyılmaz C., Kök M.: J. Anal. Appl. Pyrolysis, 2003, 67, 369. https://doi.org/10.1016/S0165-2370(02)00075-X
  2. Shuping Z., Tulong W., Minde Y. et al.: Bioresource Technol., 2010, 101, 359. https://doi.org/10.1016/j.biortech.2009.08.020
  3. Pyshyev S., Prysiazhnyi Yu., Shved M. et al.: Сrit. Rev. Envir. Sci. Tech., 2017, 24, 2387. https://doi.org/10.1080/10643389.2018.1426968
  4. Prysiazhnyi Yu., Shved M., Pyshyev S. et al.: Chem. Chem. Technol., 2018, 12, 355. https://doi.org/10.23939/chcht12.03.355
  5. Malovanyy M., Petrushka K., Petrushka I.: Chem. Chem. Technol., 2019, 13, 372. https://doi.org/10.23939/chcht13.03.372
  6. Food and Agricultural Organization. Forestry Production and Trade; FAO: Rome, Italy, 2019.
  7.  WorldWildlife Fund. The Dirty Business of Barbecue Charcoal;WorldWildlife Fund: Washington, DC, USA,2019.
  8. Bailis R., Rujanavech C., Dwivedi P. et al.: Energy Sustain. Dev., 2013,17, 189. https://doi.org/10.1016/j.esd.2012.10.008
  9. Pereira E., Martins M., Pecenka R. et al.: Renew. Sustain. Energy Rev.,2017, 75, 592. https://doi.org/10.1016/j.rser.2016.11.028
  10. The Forest Trust. Charcoal TFT Research. http://www.tftearth.org/wp-content/uploads/2015/05/TFT-charcoal-research...
  11. MacroMarket. Wood Charcoal (Including Shell or Nut Charcoal). https://macro.market/product/09440200
  12. Observatory of Economic Complexity. Wood Charcoal (Including Shell or Nut Charcoal). https://oec.world/en/profile/hs92/440200/
  13. International Energy Agency. What is Energy Security? International Energy Agency: Paris, France, 2018.
  14. United States Chamber of Commerce. International Index of Energy Security Risk. Assessing Risk in a GlobalEnergy Market. https://www.globalenergyinstitute.org/sites/default/files/energyrisk_int...
  15. Industrial charcoal making. Food and agriculture organization of the United Nations. Rome, 1985, 142.
  16. Pereira B., Oliveira A., Carvalho A. et al.: Int. J. Forestry Res., 2012, 523025. https://doi.org/10.1155/2012/523025
  17. Nhuchhen D., Afzal M.: Bioengineering, 2017, 4, 7. https://doi.org/10.3390/bioengineering4010007
  18. Jigisha P., Channiwala S., Ghosal G.: Fuel, 2005, 84, 487. https://doi.org/10.1016/j.fuel.2004.10.010
  19. Briseno-Uribe K., Carrillo Parra A., Bustamante-Garcia V. et al.: Int. J. Green Energ., 2015, 12, 961. https://doi.org/10.1080/15435075.2014.891121
  20. Oyedun A., Lam K., Hui C.: Chinese J. Chem. Eng., 2012, 20, 455. https://doi.org/10.1016/S1004-9541(11)60206-1
  21. Bustos-Vanegas J., Martins M., Freitas A. et al.: Fuel, 2019, 244, 412. https://doi.org/10.1016/j.fuel.2019.01.136
  22. Somerville M., Deev A..: Renew. Energ., 2020, 151, 419. https://doi.org/10.1016/j.renene.2019.11.036
  23. Kluska J., OchnioM., Kardas D.: Waste Manage., 2020, 105, 560. https://doi.org/10.1016/j.wasman.2020.02.036
  24. Zhang X., Yuan Z., Yao Q. et al.: Bioresour. Technol., 2019, 290, 121800. https://doi.org/10.1016/j.biortech.2019.121800
  25. Takada M., Niu R., Minami E. et al.: Biomass Bioenerg., 2018, 115, 130. https://doi.org/10.1016/j.biombioe.2018.04.023
  26. Fu P., Yi W., Bai X. et al.: J. Bioresour. Technol., 2011, 102, 8211. https://doi.org/10.1016/j.biortech.2011.05.083
  27. Chun Y., Sheng G., Chiou C. et al.: Environ. Sci. Technol., 2004, 166, 500. https://doi.org/10.1021/es960481f
  28. Ahmad M., Lee S., Dou X. et al.: Bioresour. Technol., 2012, 118, 536. https://doi.org/10.1016/j.biortech.2012.05.042
  29. Demirbas A.: Energy, 1999, 24, 141. https://doi.org/10.1016/S0360-5442(98)00077-2
  30. Miranda M., Veras C., Ghesti G: Waste Manage., 2020, 103, 177. https://doi.org/10.1016/j.wasman.2019.12.025
  31. Ahmad R., Sulaiman S., Yusuf S. et al.: Platform: A Journal of Engineering, 2020, 4, 73.
  32. Tran K.-Q., Alonso M., Wang L. et al.: Energy Procedia, 2017, 105, 787. https://doi.org/10.1016/j.egypro.2017.03.390
  33. Wang L., Skreiberg O., Gronli M. et al.: Energ. Fuel., 2013, 27, 2146. https://doi.org/10.1016/j.egypro.2017.03.390
  34. Di Blasi C.: Prog. Energ. Combust., 2008, 34, 47. https://doi.org/10.1016/j.pecs.2006.12.001
  35. Bui H.-H., Wang L., Tran K.-Q. et al.: Energy Procedia, 2017, 105, 316. https://doi.org/10.1016/j.egypro.2017.03.320
  36. Liu H. et al.: Energ. Fuel., 2003, 17, 961. https://doi.org/10.1021/ef020231m
  37. Adschiri T, Kojima T, Furusawa T.: Chem. Eng. Sci., 1987, 42, 1319. https://doi.org/10.1016/0009-2509(87)85005-4
  38. Wang L., Barta-Rajnai E., Hu K.: Energy Procedia, 2017,105, 830. https://doi.org/10.1016/j.egypro.2017.03.397
  39. Rodriges T., Braghini Jr. A.: J. Anal. Appl. Pyrolysis, 2019, 143, 104670. https://doi.org/10.1016/j.jaap.2019.104670
  40. Rodriges T., Braghini Jr. A.: Renew. Sustain. Energ. Rev., 2019, 111, 170. https://doi.org/10.1016/j.rser.2019.04.080
  41. Gronli M.: Industrial production of charcoal. SINTEF Energy Research. 1999. N-7465. Trondheim. Norway.
  42. Kammen D., Lew D. (Eds.): Renewable and Appropriate Energy Report. National Renewable Energy Laboratory: University of California, Berkeley 2005.
  43. Lambiotte A.: Pat. US2289917A, Publ. July 14, 1942.
  44. Emrich W.: Handbook of Charcoal Making – the Traditional and Industrial Methods. Springer 1985. https://doi.org/10.1007/978-94-017-0450-2
  45. Kajina W., Junpen A., Garivait S.: J. Sustain. Energ. Environ., 2019, 10, 19.
  46. Lucio A., Santos S.: Proceed. 2nd International Meeting on Ironmaking and 1st International Symposium on Iron Ore. ABM Publishers, Sao Luis City-Maranhao State Brazil, 2004, 2, 1133.
  47. Lucio A, Viera S: 45 Seminario de Reducao de Minerio de Ferro e Materias-primas, ABM. Rio de Janeiro 2015, RJ, Brazil.
  48.  http://carbonex.fr/home.html
  49. Zola F., Colmenero J., Aragao F. et al.: Energy, 2020, 190, 116377. https://doi.org/10.1016/j.energy.2019.116377