Theoretical Studies of DENOx SCR over Cu-, Fe- and Mn-FAU Catalysts

2021;
: pp. 16 - 25
1
Faculty of Chemical Engineering and Technology, Cracow University of Technology
2
Faculty of Chemical Engineering and Technology, Cracow University of Technology

Ab initio calculations based on the density functional theory were used. A cluster model of the faujasite zeolite structure (Al2Si22O66H36) with metal particles adsorbed above the aluminium centres was used. The NO and NH3 adsorption processes, individual and co-adsorption, have been studied over metal nanoparticles bound into zeolite clusters. Several configurations, electronic structure (charges, bond orders) and vibration frequencies have been analyzed to determine feasible pathways for the deNOx reaction. The M2O dimers (M = Cu, Mn or Fe) were considered in relation to the previous studies of iron complexes.

  1. Shelef M.: Chem. Rev. 1995, 95, 209. https://doi.org/10.1021/cr00033a008
  2. Yashnik S., Ismagilov Z.: Appl. Catal. B-Environ., 2015, 170, 241. https://doi.org/10.1016/j.apcatb.2015.01.021
  3. Rudolph J., Jacob C.R.: ACS Omega, 2019, 4, 7987. https://doi.org/10.1021/acsomega.9b00600
  4. Long R., Yang R.: J. Catal., 1999, 188, 332. https://doi.org/10.1006/jcat.1999.2674
  5. Schwidder M., Kumar M., Klementiev K. et al.: J. Catal., 2005, 231, 314. https://doi.org/10.1016/j.jcat.2005.01.031
  6. Grossale A., Nova I., Tronconi E.: Catal. Today, 2008, 136, 18. https://doi.org/10.1016/j.cattod.2007.10.117
  7. Schmieg S., Oh S., Kim C. et al.: Catal. Today, 2012, 184, 252. https://doi.org/10.1016/j.cattod.2011.10.034
  8. Blakeman P., Burkholder E., Chen H.-Y., et al.: Catal. Today, 2014, 231, 56. https://doi.org/10.1016/j.cattod.2013.10.047
  9. Sun Q., Gao Z., Chen H., Sachtler W.: J. Catal., 2011, 201, 89. https://doi.org/10.1006/jcat.2001.3228
  10. Heindrich F., Schmidt C., Loeffler E. et al.: J. Catal., 2002, 212, 157. https://doi.org/10.1006/jcat.2002.3775
  11. Kröcher O., Devadas M., Elsener M., et al.: Appl. Catal. B, 2006, 66, 208. https://doi.org/10.1016/j.apcatb.2006.03.012
  12. Ma A., Grünert W.: Chem. Commun., 1999, 1, 71.https://doi.org/10.1039/A807490I
  13. Santhosh K., Schwidder M., Grünert W., et al.: J. Catal., 2006, 239, 173. https://doi.org/10.1016/j.jcat.2006.01.024
  14. Rivallan M., Ricchiardi G., Bordiga S., Zecchina A.: J. Catal., 2009, 264, 104. https://doi.org/10.1016/j.jcat.2009.03.012
  15. Pirutko L., Chernyavsky V., Starokon E. et al.: Appl. Catal. B, 2009, 91, 174. https://doi.org/10.1016/j.apcatb.2009.05.021
  16. Fellah M., van Santen R., Onal I.: J. Phys. Chem. C, 2009, 113, 15307. https://doi.org/10.1021/jp904224h
  17. Yuranov I., Bulushev D., Renken A., Kiwi-Minsker L.: Appl. Catal. A, 2007, 319, 128. https://doi.org/10.1016/j.apcata.2006.11.023
  18. Czekaj I., Brandenberger S., Kröcher O.: Micropor. Mesopor. Mat., 2013, 169, 97. https://doi.org/10.1016/j.micromeso.2012.10.018
  19. Ehrich H., Schwieger W., Jahnisch K.: Appl. Catal. A-Gen., 2004, 272, 311. https://doi.org/10.1016/j.apcata.2004.06.003
  20. Battiston A., Bitter J., Koningsberger D.: J. Catal., 2003, 218, 163. https://doi.org/10.1016/S0021-9517(03)00120-9
  21. Chen H., Sachtler W.: Catal. Today, 1998, 42, 73. https://doi.org/10.1016/S0920-5861(98)00078-9
  22. Joyner R., Stockenhuber M.: J. Phys. Chem. B, 1999, 103, 5963. https://doi.org/10.1021/jp990978m
  23. Joyner R., Stockenhuber M.: Catal. Lett., 1997, 45, 15. https://doi.org/10.1023/A:1019063511784
  24. Krishna K., Makkee M.: Catal. Today, 2006, 114, 23. https://doi.org/10.1016/j.cattod.2006.02.002
  25. Hensen E., Zhu Q., van Santen R.: J. Catal., 2003, 220, 260. https://doi.org/10.1016/j.jcat.2003.09.001
  26. Zecchina A., Rivallan M., Berlier G., et al.: Phys. Chem. Chem. Phys., 2007, 9, 3483. https://doi.org/10.1039/B703445H
  27. Sun K., Xia H., Feng Z., et al.: J. Catal., 2008, 254, 383. https://doi.org/10.1016/j.jcat.2008.01.017
  28. Panov G., Uriarte A., Rodkin M., Sobolev V.: Catal. Today, 1998, 41, 365. https://doi.org/10.1016/S0920-5861(98)00026-1
  29. El-Malki E., van Santen R., Sachtler W.: J. Catal., 2000, 196, 212. https://doi.org/10.1006/jcat.2000.3034
  30. Perez-Ramirez J.: J. Catal., 2004, 227, 512. https://doi.org/10.1016/j.jcat.2004.08.005
  31. Pirngruber G., Roy P.: Catal. Today, 2005, 110, 199. https://doi.org/10.1016/j.cattod.2005.09.023
  32. Moreno-González M., Hueso B., Boronat M., et al.: J. Phys. Chem. Lett., 2015, 6, 1011. https://doi.org/10.1021/acs.jpclett.5b00069
  33. Zhang R., McEwen J.-S., Kollár M. et al.: ACS Catal., 2014, 4, 4093. https://doi.org/10.1021/cs500563s
  34. Zhang R., Li H., McEwen J.-S.: J. Phys. Chem. C, 2017, 121, 25759. https://doi.org/10.1021/acs.jpcc.7b04309
  35. Paolucci C., Parekh A., Khurana I. et al.: J. Am. Chem. Soc., 2016,138, 6028. https://doi.org/10.1021/jacs.6b02651
  36.  Kerkeni B., Berthout D., Berthomieu D. et al.: J. Phys. Chem. C, 2018, 122, 16741. https://doi.org/10.1021/acs.jpcc.8b03572
  37. Chen P., Khetan A., Jabłońska M. et al.: Appl. Catal. B-Environ., 2018, 237, 263. https://doi.org/10.1016/j.apcatb.2018.05.091
  38. Zhang R., Anderst E., Groden K., McEwen J.-S.: Ind. Eng. Chem. Res., 2018, 57, 13396. https://doi.org/10.1021/acs.iecr.8b03643
  39. Baran R., Valentin L., Krafft J.-M. et al.: Phys. Chem. Chem. Phys., 2017, 19, 13553. https://doi.org/10.1039/C7CP02096A
  40. Ettireddy P., Ettireddy N., Mamedov S. et al.: Appl. Catal. B, 2007, 76, 123. https://doi.org/10.1016/j.apcatb.2007.05.010
  41. Liu F., He H., Ding Y., Zhang C.: Appl. Catal. B, 2009, 93, 194. https://doi.org/10.1016/j.apcatb.2009.09.029
  42.  Liang X., Li J., Lin Q., Sun K.: Catal. Commun., 2007, 8, 1901. https://doi.org/10.1016/j.catcom.2007.03.006
  43. Samojeden B., Motak M., Grzybek T.: C. R. Chim., 2015, 18, 1049. https://doi.org/10.1016/j.crci.2015.04.001
  44. Favez J.-Y., Weilenmann M., Stilli J.: Atmos. Environ., 2009, 43, 996. https://doi.org/10.1016/j.atmosenv.2008.03.037
  45. Borfecchia E., Lomachenko K., Giordanino F. et al.: Chem. Sci., 2015, 6, 548. https://doi.org/10.1039/C4SC02907K
  46. Dzwigaj S., Massiani P., Davidson A., Che M.: J. Mol. Catal. A-Chem., 2000, 155, 169. https://doi.org/10.1016/S1381-1169(99)00332-5
  47. Dzwigaj S., Matsuoka M., Franck R. et al.: J. Phys. Chem. B, 1998, 102, 6309. https://doi.org/10.1021/jp981454+
  48. Xu W., Zhang G., Chen H.et al.: Chinese J. Catal., 2018, 39, 118. https://doi.org/10.1016/S1872-2067(17)62983-8
  49. Gao F., Kwak J., Szanyi J., Peden C.: Top. Catal., 2013, 56, 1441. https://doi.org/10.1007/s11244-013-0145-8
  50. Janssens T., Falsig H., Lundegaard L. et al.: ACS Catal., 2015, 5, 2832. https://doi.org/10.1021/cs501673g
  51. Paolucci C., Verma A., Bates S. et al.: Angew. Chem. Int. Edit., 2014, 53, 11828. https://doi.org/10.1002/anie.201407030
  52.  Mao Y., Wang Z., Wang H.-F., Hu P.: ACS Catal., 2016, 6, 7882. https://doi.org/10.1021/acscatal.6b01449
  53. Günter T., Carvalho H., Doronkin D. et al.: Chem. Commun., 2015, 51, 9227. https://doi.org/10.1039/C5CC01758K
  54. Mao Y., Wang H.-F., Hu P.: Int. J. Quantum Chem., 2015, 115, 618. https://doi.org/10.1002/qua.24844
  55. Brüggemann T., Keil F.: J. Phys. Chem. C, 2011, 115, 23854. https://doi.org/10.1021/jp206931z
  56. Hermann K., Pettersson L., Casida M. et al.: StoBe-deMon; deMon Software: Stockholm, Berlin 2005.http://www.fhi-berlin.mpg.de/KHsoftware/StoBe/
  57. Perdew J., Burke K., Ernzerhof M.: Phys. Rev. Lett., 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  58. Hammer B., Hansen L., Nørskov J.: Phys. Rev. B, 1999, 59, 7413. https://doi.org/10.1103/PhysRevB.59.7413
  59. Broclawik E., Salahub D.: J. Mol. Catal., 1993, 82, 117. https://doi.org/10.1016/0304-5102(93)80028-S
  60. Jasiński R.: React. Kinet. Mech. Catal., 2016, 119, 49. https://doi.org/10.1007/s11144-016-1038-1
  61. Mulliken R.: J. Chem. Phys., 1955, 23, 1833. https://doi.org/10.1063/1.1740589
  62. Mayer I.: Chem. Phys. Lett., 1983, 97, 270. https://doi.org/10.1016/0009-2614(83)80005-0
  63.  Mayer I.: J. Mol. Struc.-THEOCHEM, 1987, 149, 81. https://doi.org/10.1016/0166-1280(87)80048-9
  64. Friedrich C.: Geometrische, elektronische und vibronische Eigenschaften der reinen und defektbehafteten V2O5(010)-Oberfläche und deren Wechselwirkung mit Adsorbaten, FU, Berlin 2004. https://doi.org/10.17169/refubium-18117
  65. http://www.iza-structure.org/databases/. (accessed on 03.02.2020)