Cellulose acetate hollow fiber membrane from banana stem fibers coated by TiO2 (CAHFMT) was prepared and characterized as an alternative material for degradation of waste textile dye. Its applicability was demonstrated by mechanical properties, FTIR, SEM, thermal resistance, performance, and degradation efficiency. Cellulose acetate (CA) was synthesized from banana stem fibers by swelling stage, acetylation reaction, and hydrolysis reaction. CA was modified using TiO2 of various concentrations. CAHFMT with 22 % w/v dope concentration has the optimum mechanical properties (stress, strain and Young’s modulus), as well as hydrophilic properties. The performances of CAHFMT with Congo red were determined. The SEM results showed that the membrane had rigid pores. Moreover, this research stated that CAHFMT could be a solution to overcome economical and effective problems.
- Gupta V., Pathania D., Agarwal S., Singh P.: J. Hazard. Mater., 2012, 243, 179. https://doi.org/10.1016/j.jhazmat.2012.10.018
- Verma A., Dash R., Bhunia P.: J. Environ. Manage. 2012, 93, 154. https://doi.org/10.1016/j.jenvman.2011.09.012
- Anjaneya O., Yogesh Souche S., Santhoshkumar M., Karegoudar T.: J. Hazard. Mater., 2011, 190, 351. https://doi.org/10.1016/j.jhazmat.2011.03.044
- Fatimah I., Sugiharto E., Wijaya K. et al.: Indones. J. Chem, 2006, 6, 38. https://doi.org/10.22146/ijc.21770
- Tapalad T., Neramittagapong A., Neramittagapong S., Boonme M.: Chiang Mai J. Sci., 2008, 35, 63.
- Zhang H., Quan Z., Chen S. et al.: Sep. Purif. Technol., 2006, 50, 147. https://doi.org/10.1016/j.seppur.2005.11.018
- Zhao C., Xue J., Ran F., Sun S.: Progr. Mater. Sci., 2013, 58, 76. https://doi.org/10.1016/j.pmatsci.2012.07.002
- Zhang X., Wang D., Lopez D., da Costa J.: J. Chem. Eng, 2014, 236, 314. https://doi.org/10.1016/j.cej.2013.09.059
- Mozia S., Toyoda M., Tsumura T. et al.: Desalination, 2007, 212, 141. https://doi.org/10.1016/j.desal.2006.10.007
- Essawy A., A.El-Hag A., Abdel-Mottaleb M. et al.: J. Hazard. Mater., 2008, 157, 547. https://doi.org/10.1016/j.jhazmat.2008.01.072
- Grzechulska-Damsel J., Tomaszewska M., Morawski A.: Desalination, 2009, 241, 118. https://doi.org/10.1016/j.desal.2007.11.084
- Kutti L.: Cellulose, Starch and Their Derivatives for Industrial Applications. Doctoral thesis. VTT Technical Research Centre of Finland, Helsinki 2013.
- Wafiroh S., Harsasi S., Puji L.: Mal. J. Fund. Appl. Sci., 2014, 10, 119. https://doi.org/10.11113/mjfas.v10n3.264
- Jiangfeng Y., Wang K., Ren M. Jefferson et al.: J. Membr. Sci., 2012, 421, 8. https://doi.org/10.1016/j.memsci.2012.03.069
- Drioli E., Giorno L.: Membrane Operations Innovative Separations and Transformations. Wiley-VCH Verlag GmbH & Co, Weinheim 2009. https://doi.org/10.1002/9783527626779
- Jayakumar R., Ramachandran R., Divyarani V. et al.: Int. J. Biol. Macromol., 2011, 48, 336. https://doi.org/10.1016/j.ijbiomac.2010.12.010
- Abedini R., Mousavi S., Aminzadeh R.: Chem. Ind. Chem. Eng. Q., 2012, 18, 385. https://doi.org/10.2298/CICEQ111202014A
- Zugenmaier P.: Crystalline Cellulose and Derivates, Characterization and Structures. Wood Science, Verlag Berlin Heidelberg 2009. https://doi.org/10.1007/978-3-540-73934-0
- Nikolić G.: Fourier Transforms - New Analytical Approaches and FTIR Strategies, InTech, Croatia 2011. https://doi.org/10.5772/2040
- Baker R.: Membrane Technology and Applications, 2nd edn. John Wiley & Sons Ltd., Chinister 2004.
- Granstrom M.: Cellulose Derivate: Synthesis, Properties and Applications. Academic Dissertation. University of Helsinki, Helsinki 2009.
- Zhang X., Wen Y., Yang Y., Liu L.: J. Macromol. Sci. B, 2008, 47, 1039. https://doi.org/10.1080/00222340802266298
- Rahmawati F., Fadillah I., Mudjijono M.: J. Mater. Environ. Sci., 2017, 8, 389.