Anomalous Sorption of Neodymium and Praseodymium Ions by Intergel System Polyacrylic Acid Hydrogel – Poly-4-Vinylpyridine Hydrogel

2022;
: pp. 7–14
1
Institute of Chemical Sciences after A.B. Bekturov
2
Institute of Chemical Sciences after A.B. Bekturov
3
Institute of Chemical Sciences after A.B. Bekturov
4
Abai Kazakh National Pedagogical University
5
Kazakh National Women’s Teacher Training University

This paper is devoted to study of sorption properties (sorption degree, polymer chain binding degree) of intergel system hydrogel of polyacrylic acid (hPAA) – hydrogel of poly-4-vinylpyridine (hP4VP) in relation to neodymium and praseodymium ions. It was found that remote interaction of the polymers in intergel pairs provides significant changes of the electrochemical and volume gravimetric properties. Strong increase of the swelling degree of hPAA is observed at the ratio 17%hPAA-83%hP4VP; significant increase of swelling degree of hP4VP is observed at the ratio 83%hPAA-17%hP4VP. Individual hydrogels of PAA and P4VP do not have sufficiently high sorption properties – sorption degree of neodymium and praseodymium ions is not higher than 65 %, polymer chain binding degree is not higher than 55 %. High ionization of hPAA and hP4VP due to remote interaction effect provides significant increase (up to 30 %) of the sorption properties. Maximum sorption of neodymium and praseodymium ions occurs at the ratios 83%hPAA-17%hP4VP and 50%hPAA-50%hP4VP (sorption degree is 93.5 % and 93.6 %, respectively). The highest values of polymer chain binding degree (in relation to neodymium and praseodymium ions) are observed at the ratios 83%hPAA-17%hP4VP and 50%hPAA-50%hP4VP – binding degree is 73.2 % and 75.4 %, respectively. Remote interaction provides possibilities for creation of innovative sorption technologies for selective sorption of aimed rare-earth elements.

  1. Mulder, M. Basic Principles of Membrane Technology; Springer: Netherlands, 1996. https://doi.org/10.1007/978-94-009-1766-8
  2. Khaing Z., Troshkina A.: Sorp. Chromatogr. Proc., 2006, 6, 972.
  3. Ion Exchangers; Dorfner, K., Ed.; Walter de Gruyter: Berlin, 1991. https://doi.org/10.1515/9783110862430
  4. Harland, C.E. Ion Exchange: Theory and Practice, 2nd edn.; The Royal Society of Chemistry, 1994. https://doi.org/10.1039/9781847551184
  5. Alekseeva, S.L.; Bolotin, S.N.; Tsupko, T.G. Sorption of Cr(VI) on AV-17 and EDE-10P Anion Exchangers, KU-2 and KB-4 Cation Exchangers, Activated Charcoal, and Foamed Graphite (STRG) is Studied. J. Appl. Chem. 2007, 80, 376-378. https://doi.org/10.1134/S107042720703007X
  6. Ergozhin, E.; Begenova, B. Polielektrolity i Kompleksiony; Evero: Almaty, 2010.
  7. Ion Exchange: Highlights of Russian Science; Muraviev, D.; Gorshkov, V.; Warshawsky, A., Eds.; Marcel Dekker: New York, 2000.
  8. Zagorodni, A. Ion Exchange Materials: Properties and Applications, 1st ed.; Elsevier Science, 2006. https://doi.org/10.1016/B978-008044552-6/50002-2
  9. Dzhafarov, V.D.; Alyev, N.A.; Guseinov, E.T.; Efendiev, A.A. Synthesis of Polymerizable Oligomers via Cationic Polymerization of α-Oxides. Polym. Sci. B, 2008, 50, 83-87. https://doi.org/10.1134/S156009040803010X
  10. Alexandratos, S.D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48, 388-398. https://doi.org/10.1021/ie801242v
  11. Membrane Science and Technology; Osada, Y.; Nakagawa, T., Eds.; Marcel Dekker: New York, 1992.
  12. Zeman, L.; Zydney, A. Microfiltration and Ultrafitration, Principles and Applications; Marcel Dekker: New York, 1996.
  13. Van Reis, R.; Zydney, A. Bioprocess Membrane Technology. J. Membrane Sci., 2007, 297, 16-50. https://doi.org/10.1016/j.memsci.2007.02.045
  14. Alimbekova, B.T.; Korganbayeva, Zh.K.; Himersen, H.J.; Kondaurov, R.G.; Jumadilov, T.K. Features of Polymethacrylic Acid and Poly-2-Methyl-5-Vinylpyridine Hydrogels Remote Interaction in an Aqueous Medium. J. Chem. Chem. Eng. 2014, 3, 265-269.
  15. Jumadilov, T. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. Abstracts of Papers, Third International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, Sept 1-4, 2013; Iv. Javakhishvili Tbilisi State University: Tbilisi, 2013; p 43.
  16. Jumadilov, T. Electrochemical and Conformational Behaviour of Intergel Systems Based on the Rare Crosslinked Polyacid and Polyvynilpyrydines. Book of Abstracts, International Conference of Lithuanian Chemical Society "Chemistry and Chemical Technology", Lithuania, Kaunas, 2014; Kaunas University of Technology: Kaunas, 2014, pp 226-229.
  17. Jumadilov, T.; Abilov, Zh.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov, A. Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and poly-4-Vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9, 459-462. https://doi.org/10.23939/chcht09.04.459
  18. Jumadilov T., Akimov A. Eskaliyeva G., Kondaurov R. Features of Polyvalent Metals Sorption by Intergel Systems. Book of Abstracts. VІІI International Scientific-Technical Conference Advance in Petroleum and Gas Industry and Petrochemistry, Lviv, Ukraine, May 16-21, 2016 Lviv Polytechnic Publishing House: Lviv, 2016, p 68.
  19. Jumadilov, T.; Kondaurov, R.; Abilov, Zh.; Grazulevicius, J.V.; Akimov, A.A. Influence of Polyacrylic Acid and poly-4-Vinylpyridine Hydrogels Mutual Activation in Intergel System on their Sorption Properties in Relation to Lanthanum (III) Ions. Pol. Bul. 2017, 74, 4701-4713. https://doi.org/10.1007/s00289-017-1985-3
  20. Suberlyak, O.; Mel'nyk, Y.; Skorokhoda, V. Regularities of Preparation and Properties of Hydrogel Membranes. Mater. Sci. 2015, 50, 889-896. https://doi.org/10.1007/s11003-015-9798-8
  21. Grytsenko, O.; Suberlyak, O.; Moravskyi, V.; Gayduk, A. Investigation of Nickel Chemical Precipitation Kinetics. East-Eur. J. Enterpr. Technol. 2016, 1, 26-31. https://doi.org/10.15587/1729-4061.2016.59506
  22. Semenyuk N., Kostiv U., Suberlyak O., Skorokhoda V. Peculiarities of Filled Porous Hydrogels Production and Properties. Chem. Chem. Technol. 2013, 7, 95-99. https://doi.org/10.23939/chcht07.01.095
  23. Jumadilov, T. Effect of remote interraction of polymeric hydrogels in innovative technology. Ind. Kazakhstan, 2011, 2, 70-72.
  24. Bekturov, E.; Suleimenov, I. Polimernie Hydrogeli; Nauka: Moskwa, 1998.
  25. Bekturov, E.; Jumadilov T. Izv. Nats. Akad. Nauk Respubliki Kazakhstan, Ser. Chem. 2010, 3, 86.
  26. Jumadilov, T.; Kondaurov, R.; Imangazy, A.; Myrzakhmetova, N.; Saparbekova, I. Phenomenon of Remote Interaction and Sorption Ability of Rare Cross-linked Hydrogels of Polymethacrylic Acid and Poly-4-vinylpyridine in Relation to Erbium Ions. Chem. Chem. Technol. 2019, 13, 451458. https://doi.org/10.23939/chcht13.04.451
  27. Jumadilov, T.; Shaltykova, D.; Suleimenov, I. Anomalous Ion Exchange Phenomenon. Book of Abstracts, Austrian-Slovenian Polymer Meeting. Bled, Slovenia, Apr 3-5, 2013; p 51. https://doi.org/10.1016/j.aasri.2012.11.087
  28. Praktikum po Phyziko-Khimicheskim Metodam Analiza; Petruhin, O., Eds.; Khimia: Moskwa, 1987.