Effect of Diaminosilane Derivative on Thermal and Swelling Behaviour of Acrylic Acid Based Hydrophilic Composites

2022;
: pp. 59–65
1
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine
2
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine
3
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine

Organic-inorganic hydrophilic composites based on sodium polyacrylate (PAANa) and poly-N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (PAPTMS) showed the improved swelling capacity at incorporation of PAPTMS. Changing of non-Fickian to Super case II swelling behaviour is observed at 20 wt % PAPTMS content. Enhancing of thermal stability and heat-resistance index of composite hydrogels compared to PAA is shown.

  1. Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297-304. https://doi.org/10.23939/chcht04.04.297
  2. Karg, M.; Hellweg, T. Smart Inorganic/Organic Hybrid Microgels: Synthesis and Characterisation. J. Mater. Chem. 2009, 19, 8714-8727. https://doi.org/10.1039/b820292n
  3. Skorohoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film Hydrogels on the Basis of Polyvinylpyrrolidone Copolymers with Regulated Sorption-Desorption Characteristics. Chem. Chem. Technol. 2017, 11, 171-174. https://doi.org/10.23939/chcht11.02.171
  4. Zadeh, M.A.; Grande, A.M.; van der Zwaag, S.; Garcia, S.J. Effect of Curing on the Mechanical and Healing Behaviour of a hybrid Dual Network: A Time Resolved Evaluation. RSC Adv. 2016, 6, 91806-91814. https://doi.org/10.1039/C6RA17799A
  5. Saito, J.; Furukawa, H.; Kurokawa, T.; Kuwabara, R.; Kuroda, S.; Tanaka, Y.; Gong, J.P.; Kitamura, N.; Yasuda, K. Robust Bonding and One-Step Facile Synthesis of Tough Hydrogels with Desirable Shape by Virtue of the Double Network Structure. Polym. Chem. 2011, 2, 575-580. https://doi.org/10.1039/C0PY00272K
  6. Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155-1158. https://doi.org/10.1002/adma.200304907
  7. Nakajima, T.; Fukuda, Y.; Kurokawa, T.; Sakai, T.; Chung, U.-I.; Gong, J.P. Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First Network. ACS Macro. Lett. 2013, 2, 518-521. https://doi.org/10.1021/mz4002047
  8. Chen, Q.; Zhu, L.; Chen, H.; Yan, H.; Huang, L.; Yang, J.; Zheng, J. A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties. Adv. Funct. Mater. 2015, 25, 1598-1607. https://doi.org/10.1002/adfm.201404357
  9. Xue, S.; Wu, Y.; Guo, M.; Liu, D.; Zhang, T.; Lei, W. Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. Nanoscale Res. Lett. 2018, 13, 393-402. https://doi.org/10.1186/s11671-018-2800-2
  10. Zhong, M.; Liu, Y.-T.; Xie, X.-M. Self-Healable, Super Tough Graphene Oxide-poly(acrylic acid) Nanocomposite Hydrogels Facilitated by Dual Cross-Linking Effects through Dynamic Ionic Interactions. J. Mater. Chem. B 2015, 3, 4001-4008. https://doi.org/10.1039/C5TB00075K
  11. Bhatia, M.; Rajulapati, S.B.; Sonawane, S.; Girdhar, A. Synthesis and Implication of Novel Poly(acrylic acid)/Nanosorbent Embedded Hydrogel Composite for Lead Ion Removal. Sci. Rep. 2017, 7, 16413. https://doi.org/10.1038/s41598-017-15642-9
  12. Zhang, Y.; Gao, P.; Lin, Z.; Chen, Y. Preparation and Swelling Properties of a Starch-g-poly(acrylic acid)/Organo-Mordenite Hydrogel Composite. Front. Chem. Sci. Eng. 2016, 10, 147-161. https://doi.org/10.1007/s11705-015-1546-y
  13. Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Mechanical, Thermal and Swelling Properties of Poly(acrylic acid)-Graphene Oxide Composite Hydrogels. Soft Matter 2012, 8, 1831-1836. https://doi.org/10.1039/C1SM06970E
  14. Rubio, J.; Mazo, M.A.; Martín-Ilana, A.; Tamayo, A. FT-IR Study of the Hydrolysis and Condensation of 3-(2-Amino-ethylamino)propyl-trimethoxy Silane Estudio FT-IR de la Hidrólisis y Condensación del 3-(2-Amino-etilamino)propil-trimetoxi silano. Bol. Soc. Esp. Cerám. 2018, 57, 160-168. https://doi.org/10.1016/j.bsecv.2017.11.003
  15. Chen, Y.; Chen, Q.; Song, L.; Li, H.-P.; Hou, F.-Z. Preparation and Characterization of Encapsulation of Europium Complex into Meso-Structured Silica Monoliths Using PEG as the Template. Micropor. Mesopor. Mat. 2009, 122, 7-12. https://doi.org/10.1016/j.micromeso.2008.12.021
  16.  Zhang, X.; Bhuvana, S.; Loo, L.S. Characterization of Layered Silicate Dispersion in Polymer Nanocomposites Using Fourier Transform Infrared Spectroscopy. J. Appl. Polym.Sci. 2012, 125, E175-E180. https://doi.org/10.1002/app.36266
  17. Carraher, C.E. Jr. Thermal Characterizations of Inorganic and Organometallic Polymers. J. Macromol. Sci., Chem. A. 1982, 17, 1293-1356. https://doi.org/10.1080/00222338208074401
  18. Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and Properties of Cyanate-Based Wave-Transparent Laminated Composites Reinforced by Dopamine/POSS Functionalized Kevlar Cloth. Compos. Sci. Technol. 2019, 169, 120-126. https://doi.org/10.1016/j.compscitech.2018.11.018
  19. Alam, M.A.; Takafuji, M.; Ihara, H. Thermosensitive Hybrid Hydrogels with Silica Nanoparticle-Cross-Linked Polymer Networks. J. Colloid Interface Sci. 2013, 405, 109-117. https://doi.org/10.1016/j.jcis.2013.04.054
  20. Siegel, G.M. Stuttering and Behavior Modification: Commentary. J Fluency Disord. 1993, 18, 109-114. https://doi.org/10.1016/0094-730X(83)90007-4
  21. Díez-Peña, E.; Quijada-Garrido, I.; Barrales-Rienda, J.M. Hydrogen-Bonding Effects on the Dynamic Swelling of P(N-iPAAm-co-MAA) Copolymers. A Case of Autocatalytic Swelling Kinetics. Macromolecules 2002, 35, 8882-8888. https://doi.org/10.1021/ma020895v
  22. Li, S.; Liu, X.; Zou, T.; Xiao, W. Removal of Cationic Dye from Aqueous Solution by a Macroporous Hydrophobically Modified Poly(acrylic Acid-acrylamide) Hydrogel with Enhanced Swelling and Adsorption Properties. Clean-Soil Air Water 2010, 38, 378-386. https://doi.org/10.1002/clen.200900220
  23. Zhang, M.; Cheng, Z.; Zhao, T.; Liu, M.; Hu, M.; Li, J. Synthesis, Characterization, and Swelling Behaviors of Salt-Sensitive Maize Bran-Poly(acrylic acid) Superabsorbent Hydrogel. J. Agric. Food Chem. 2014, 62, 8867-8874. https://doi.org/10.1021/jf5021279
  24. Kaşgöz, H.; Durmus, A. Dye Removal by a Novel Hydrogel-Clay Nanocomposite with Enhanced Swelling Properties. Polym. Advan. Technol. 2008, 19, 838-845. https://doi.org/10.1002/pat.1045
  25. Munday, D.L.; Cox, P. Compressed Xanthan and Karaya Gum Matrices: Hydration, Erosion and Drug Release Mechanisms. Int. J. Pharm. 2000, 203, 179-192. https://doi.org/10.1016/S0378-5173(00)00444-0