Effect of Diaminosilane Derivative on Thermal and Swelling Behaviour of Acrylic Acid Based Hydrophilic Composites

: pp. 59–65
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine

Organic-inorganic hydrophilic composites based on sodium polyacrylate (PAANa) and poly-N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (PAPTMS) showed the improved swelling capacity at incorporation of PAPTMS. Changing of non-Fickian to Super case II swelling behaviour is observed at 20 wt % PAPTMS content. Enhancing of thermal stability and heat-resistance index of composite hydrogels compared to PAA is shown.

  1. Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297-304. https://doi.org/10.23939/chcht04.04.297
  2. Karg, M.; Hellweg, T. Smart Inorganic/Organic Hybrid Microgels: Synthesis and Characterisation. J. Mater. Chem. 2009, 19, 8714-8727. https://doi.org/10.1039/b820292n
  3. Skorohoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film Hydrogels on the Basis of Polyvinylpyrrolidone Copolymers with Regulated Sorption-Desorption Characteristics. Chem. Chem. Technol. 2017, 11, 171-174. https://doi.org/10.23939/chcht11.02.171
  4. Zadeh, M.A.; Grande, A.M.; van der Zwaag, S.; Garcia, S.J. Effect of Curing on the Mechanical and Healing Behaviour of a hybrid Dual Network: A Time Resolved Evaluation. RSC Adv. 2016, 6, 91806-91814. https://doi.org/10.1039/C6RA17799A
  5. Saito, J.; Furukawa, H.; Kurokawa, T.; Kuwabara, R.; Kuroda, S.; Tanaka, Y.; Gong, J.P.; Kitamura, N.; Yasuda, K. Robust Bonding and One-Step Facile Synthesis of Tough Hydrogels with Desirable Shape by Virtue of the Double Network Structure. Polym. Chem. 2011, 2, 575-580. https://doi.org/10.1039/C0PY00272K
  6. Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155-1158. https://doi.org/10.1002/adma.200304907
  7. Nakajima, T.; Fukuda, Y.; Kurokawa, T.; Sakai, T.; Chung, U.-I.; Gong, J.P. Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First Network. ACS Macro. Lett. 2013, 2, 518-521. https://doi.org/10.1021/mz4002047
  8. Chen, Q.; Zhu, L.; Chen, H.; Yan, H.; Huang, L.; Yang, J.; Zheng, J. A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties. Adv. Funct. Mater. 2015, 25, 1598-1607. https://doi.org/10.1002/adfm.201404357
  9. Xue, S.; Wu, Y.; Guo, M.; Liu, D.; Zhang, T.; Lei, W. Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. Nanoscale Res. Lett. 2018, 13, 393-402. https://doi.org/10.1186/s11671-018-2800-2
  10. Zhong, M.; Liu, Y.-T.; Xie, X.-M. Self-Healable, Super Tough Graphene Oxide-poly(acrylic acid) Nanocomposite Hydrogels Facilitated by Dual Cross-Linking Effects through Dynamic Ionic Interactions. J. Mater. Chem. B 2015, 3, 4001-4008. https://doi.org/10.1039/C5TB00075K
  11. Bhatia, M.; Rajulapati, S.B.; Sonawane, S.; Girdhar, A. Synthesis and Implication of Novel Poly(acrylic acid)/Nanosorbent Embedded Hydrogel Composite for Lead Ion Removal. Sci. Rep. 2017, 7, 16413. https://doi.org/10.1038/s41598-017-15642-9
  12. Zhang, Y.; Gao, P.; Lin, Z.; Chen, Y. Preparation and Swelling Properties of a Starch-g-poly(acrylic acid)/Organo-Mordenite Hydrogel Composite. Front. Chem. Sci. Eng. 2016, 10, 147-161. https://doi.org/10.1007/s11705-015-1546-y
  13. Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Mechanical, Thermal and Swelling Properties of Poly(acrylic acid)-Graphene Oxide Composite Hydrogels. Soft Matter 2012, 8, 1831-1836. https://doi.org/10.1039/C1SM06970E
  14. Rubio, J.; Mazo, M.A.; Martín-Ilana, A.; Tamayo, A. FT-IR Study of the Hydrolysis and Condensation of 3-(2-Amino-ethylamino)propyl-trimethoxy Silane Estudio FT-IR de la Hidrólisis y Condensación del 3-(2-Amino-etilamino)propil-trimetoxi silano. Bol. Soc. Esp. Cerám. 2018, 57, 160-168. https://doi.org/10.1016/j.bsecv.2017.11.003
  15. Chen, Y.; Chen, Q.; Song, L.; Li, H.-P.; Hou, F.-Z. Preparation and Characterization of Encapsulation of Europium Complex into Meso-Structured Silica Monoliths Using PEG as the Template. Micropor. Mesopor. Mat. 2009, 122, 7-12. https://doi.org/10.1016/j.micromeso.2008.12.021
  16.  Zhang, X.; Bhuvana, S.; Loo, L.S. Characterization of Layered Silicate Dispersion in Polymer Nanocomposites Using Fourier Transform Infrared Spectroscopy. J. Appl. Polym.Sci. 2012, 125, E175-E180. https://doi.org/10.1002/app.36266
  17. Carraher, C.E. Jr. Thermal Characterizations of Inorganic and Organometallic Polymers. J. Macromol. Sci., Chem. A. 1982, 17, 1293-1356. https://doi.org/10.1080/00222338208074401
  18. Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and Properties of Cyanate-Based Wave-Transparent Laminated Composites Reinforced by Dopamine/POSS Functionalized Kevlar Cloth. Compos. Sci. Technol. 2019, 169, 120-126. https://doi.org/10.1016/j.compscitech.2018.11.018
  19. Alam, M.A.; Takafuji, M.; Ihara, H. Thermosensitive Hybrid Hydrogels with Silica Nanoparticle-Cross-Linked Polymer Networks. J. Colloid Interface Sci. 2013, 405, 109-117. https://doi.org/10.1016/j.jcis.2013.04.054
  20. Siegel, G.M. Stuttering and Behavior Modification: Commentary. J Fluency Disord. 1993, 18, 109-114. https://doi.org/10.1016/0094-730X(83)90007-4
  21. Díez-Peña, E.; Quijada-Garrido, I.; Barrales-Rienda, J.M. Hydrogen-Bonding Effects on the Dynamic Swelling of P(N-iPAAm-co-MAA) Copolymers. A Case of Autocatalytic Swelling Kinetics. Macromolecules 2002, 35, 8882-8888. https://doi.org/10.1021/ma020895v
  22. Li, S.; Liu, X.; Zou, T.; Xiao, W. Removal of Cationic Dye from Aqueous Solution by a Macroporous Hydrophobically Modified Poly(acrylic Acid-acrylamide) Hydrogel with Enhanced Swelling and Adsorption Properties. Clean-Soil Air Water 2010, 38, 378-386. https://doi.org/10.1002/clen.200900220
  23. Zhang, M.; Cheng, Z.; Zhao, T.; Liu, M.; Hu, M.; Li, J. Synthesis, Characterization, and Swelling Behaviors of Salt-Sensitive Maize Bran-Poly(acrylic acid) Superabsorbent Hydrogel. J. Agric. Food Chem. 2014, 62, 8867-8874. https://doi.org/10.1021/jf5021279
  24. Kaşgöz, H.; Durmus, A. Dye Removal by a Novel Hydrogel-Clay Nanocomposite with Enhanced Swelling Properties. Polym. Advan. Technol. 2008, 19, 838-845. https://doi.org/10.1002/pat.1045
  25. Munday, D.L.; Cox, P. Compressed Xanthan and Karaya Gum Matrices: Hydration, Erosion and Drug Release Mechanisms. Int. J. Pharm. 2000, 203, 179-192. https://doi.org/10.1016/S0378-5173(00)00444-0