Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application

: pp. 227 – 236
Department of Physical Chemistry of Fossil Fuels L.M. Lytvynenko Institute of Physico-organic Chemistry and Coal Chemistry NAS of Ukraine
Department of Physical Chemistry of Fossil Fuels L.M. Lytvynenko Institute of Physico-organic Chemistry and Coal Chemistry NAS of Ukraine
Lviv Polytechnic National University
Department of Physical Chemistry of Fossil Fuels L.M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of NAS of Ukraine

Nanostructured “shell-shell” type catalysts, which consist of a magnetically sensitive core of cobalt ferrite and a protective layer of porous SiO2, have been synthesized. On the surface of porous SiO2 clusters of copper oxide are situated playing the role of catalytic centers. The structure of CoFe2O4 / SiO2 / CuO catalyst was confirmed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Studies of the catalytic activity of the obtained catalysts were performed in the Fenton system on a model solution of methylene blue (MB). The catalytic activity of the composite in MB destruction reaches 99%. The high magnetic sensitivity of the obtained catalysts ensures their easy removal from the reaction medium. The catalysts demonstrated the possibility of reusability without loss of activity.

[1] Maximillian J., Brusseau M.L., Glenn E.P., Matthias A.D. Pollution and Environmental Perturbations in the Global System Environ. In Environmental and Pollution Science, 3rd ed.; Academic Press, 2019; pp 457-476. 
[2] Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani-Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water Pollution: Effects, Prevention, and Climatic Impact. In Water Challenges of an Urbanizing World, 2018.
[3] Deng Y., Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167-176.
[4] Ganiyu, S.O.; Vieira dos Santos, E.; Tossi de Araújo Costa, E.C.; Martínez-Huitle, C.A. Electrochemical Advanced Oxidation Processes (EAOPs) as Alternative Treatment Techniques for Carwash Wastewater Reclamation. Chemosphere 2018, 211, 998-1006.
[5] Pham, A. N.; Xing, G.; Miller, Ch. J.; Waite, T. D. Fenton-like Copper Redox Chemistry Revisited: Hydrogen Peroxide and Superoxide Mediation of Copper-Catalyzed Oxidant Production. J. Catal. 2013, 301, 54-64.
[6] Yang, Y.; Liu, Y.; Fang, X.; Miao, W.; Chen, X.; Sun, J.; Ni, B.-J.; Mao, S. Heterogeneous Electro-Fenton Catalysis with HKUST-1-derived Cu@C Decorated in 3D Graphene Network. Chemosphere 2020, 243, 125423.
[7] Bonfim, D.P.F.; Santana, C.S.; Batista, M.S.; Fabiano, D.P. Catalytic Evaluation of CuO/[Si]MCM-41 in Fenton-like Reactions. Chem. Eng. Technol. 2019, 42, 882-888.
[8] Ding, L.; Zhang, M.; Zhang, Y.; Yang, J.; Zheng, J.; Hayat, T.; Alharbi, N.S.; Hu, J. Tailoring the Nickel Nanoparticles Anchored on the Surface of Fe3O4@SiO2 Spheres for Nanocatalysis. Nanotechnology 2017, 28, 345601.
[9] Shi, B.-N.; Wan, J.-F.; Liu, Ch.-T.; Yu, X.-J.; Ma, F.-W. Synthesis of CoFe2O4/MCM-41/TiO2 Composite Microspheres and its Performance in Degradation of Phenol. Mater. Sci. Semicond. Process. 2015, 37, 241-249. 
[10] Naĭden, E.P.; Zhuravlev, V. A.; Itin, V. I.; Terekhova, O.G.; Magaeva, A.A.; Ivanov, Yu.F. Magnetic Properties and Structural Parameters of Nanosized Oxide Ferrimagnet Powders Produced by Mechanochemical Synthesis from Salt Solutions. Phys. Solid State 2008, 50, 894-900.
[11] Dutta, B. K.; Abd Ellateif, T.M.; Maitra, S. Development of a Porous Silica Film by Sol-gel Process. Int. Sci. Index, Chem. Mol. Engin. 2011, 5, 34-38.
[12] Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper Oxide as Efficient Catalyst for Oxidative Dehydrogenation of Alcohols with Air. Catal. Sci. Technol. 2015, 5, 2467-2477.
[13] Zedan, A. F.; Mohamed, A. T.; El-Shall, M. S.; Al-Qaradawi, S.Y.; Aljaber, A.S. Tailoring the Reducibility and Catalytic Activity of CuO Nanoparticles for Low Temperature CO Oxidation. RSC Adv. 2018, 8, 19499-19511.
[14] Fang, M.; Zheng, R.; Wu, Y.; Yue, D.; Qian, X.; Zhao, Y.; Bian, Z. CuO Nanosheet as a Recyclable Fenton-like Catalyst Prepared from Simulated Cu(II) Waste Effluents by Alkaline H2O2 Reaction. Environ. Sci. Nano 2019, 6, 105-114. 
[15] Liu, X.; Zhang, J.; Guo, X.; Wu, S.; Wang, S. Porous α-Fe2O3 Decorated by Au Nanoparticles and their Enhanced Sensor Performance. Nanotechnology 2010, 21, 095501. 
[16] Said, A.A.; Abd El-Salaam, K.M.; Hassan, E.A.; El-Awad, A.M.; Mohamed, M.M. A Study on the Thermal Decomposition of Iron-cobalt Mixed Hydroxides. J. Therm. Anal. 1993, 39, 309-321
[17] Osuntokun J., Ajibade P. A.: Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices. J. Nanomater. 2016, 2016, 3296071.
[18] Rao, K.S.; Choudary, G.S.V.R.K.; Rao, K.H.; Sujatha, Ch. Structural and Magnetic Properties of Ultrafine CoFe2O4 Nanoparticles. Procedia Materials Science 2015, 10, 19-27.
[19] Waje, S. B.; Hashim, M.; Yusoff, W.M.D.W.; Abbas, Z. X-ray Diffraction Studies on Crystallite Size Evolution of CoFe2O4 Nanoparticles Prepared Using Mechanical Alloying and Sintering. Appl. Surf. Sci. 2010, 256, 3122-3127.
[20] Dolhov, B.N. Kataliz v orhanycheskoi khimii (2 Ed). Hosudarstvennoe nauchno-tekhnycheskoe izdatelʹstvo khymicheskoi literatury, 1959. (in Russia)
[21] Prozorova, D.A.; Afyneevskyj, A.V.; Knjazev, A.V. Zakonomernosti dezaktivatsii nanesennykh nikelevykh katalizatorov gidririvaniia sulfide-ionom. Žurnal Fizicheskoi Khimii 2019, 93, 1681. (in Russia)
[22] Cao, Z.-F.; Wen, X.; Chen, P.; Yang, F.; Ou, X.-L.; Wang, S.; Zhong, H. Synthesis of a Novel Heterogeneous Fenton Catalyst and Promote the Degradation of Methylene Blue by Fast Regeneration of Fe2+. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 94-104.
[23] Yang, B.; Tian, Z.; Zhang, L.; Guo, Y.; Yan, S. Enhanced Heterogeneous Fenton Degradation of Methylene Blue by Nanoscale Zero Valent Iron (nZVI) Assembled on Magnetic Fe3O4/Reduced Graphene Oxide. J. Water Process Eng. 2015, 5, 101-111.