Synthesis and Antimicrobial Activities of Salicylaldehyde Schiff Base-Cu(II) Complex and Its Catalytic Activity in N-Arylation Reactions

2023;
: pp. 557 - 566
1
Shahid Chamran University of Ahvaz
2
Shahid Chamran University of Ahvaz
3
Shahid Chamran University of Ahvaz

Salicylaldehyde Schiff base-Cu complex (1:1 [M:L] chelate) was synthesized using salicylaldehyde, urea, and CuCl2. Its catalytic activity was then assessed in N-arylation of aromatic amines (1H-indole, 1H- pyrazole, 1H-imidazole, 1H-benzo[d][1,2,3]triazole, and aniline) with aryl halides. This reaction does not need aryl boronic acids as the active aryl source or palladium-based catalyst. Cu is cheaper than many other catalysts, and required ligands usually having quite simple structure and being inexpensive. On the other hand, with a proper ligand selection we can have a modified solubility, reactivity, and reaction efficiency. The structure and composition of this novel complex were approved by FT-IR, UV-Vis, atomic absorption spectroscopy, elemental analysis, and TGA/DTA. Investigating the antibacterial activity of the Cu complex suggests a significant antibacterial activity against standard species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis.

  1. Salve, P.; Alegaon, S.; Sriram, D. Three-Component, One-Pot Synthesis of Anthranilamide Schiff Bases Bearing 4-Aminoquinoline Moiety as Mycobacterium Tuberculosis Gyrase Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27 (8), 1859-1866. https://doi.org/10.1016/J.BMCL.2017.02.031
  2. Zhou, X.-X.; Fang, H.-C.; Ge, Y.-Y.; Zhou, Z.-Y.; Gu, Z.-G.; Gong, X.; Zhao, G.; Zhan, Q.-G.; Zeng, R.-H.; Cai, Y.-P. Assembly of a Series of Trinuclear Zinc(II) Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand. Cryst. Growth Des. 2010, 10 (9), 4014-4022. https://doi.org/10.1021/CG100612B
  3. Arslan, H.; Duran, N.; Borekci, G.; Ozer, C. K.; Akbay, C. Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes. Molecules 2009, 14, 519-527. https://doi.org/10.3390/molecules14010519
  4. Mohammed Hello, K.; Mohammad, A. K. T.; Jumaah Ali, H. Solid Melamine Sulfate for Schiff Base Synthesis. Chem. Chem. Technol. 2019, 13 (2), 198-204. https://doi.org/10.23939/chcht13.02.198
  5. Singh, W.M.; Dash, B. C. Synthesis of Some New Schiff Bases Containing Thiazole and Oxazole Nuclei and Their Fungicidal Activity. Pesticides 1988, 22, 33-37.
  6. More, P.G.; Bhalvankar, R.B.; Pattar, S.C. Synthesis and Biological Activity of Schiff Bases of Aminothiazoles. J. Indian Chem. Soc. 2001, 78 (9), 474-475.
  7. Wang, Y.-E.; Yang, D.; Huo, J.; Chen, L.; Kang, Z.; Mao, J.; Zhang, J. Design, Synthesis, and Herbicidal Activity of Thioether Containing 1,2,4-Triazole Schiff Bases as Transketolase Inhibitors. J. Agric. Food Chem. 2021, 69, 11773-11780. https://doi.org/10.1021/acs.jafc.1c01804
  8. Shkawat, D.; Sabnis, S.; Deliwala, C. Potential Anticancer Agents, Schiff Bases from p-(3-Azaspiro [5, 5]undec-3-yl) Benzal-dehydes. Bull. Haffkine Ins. 1973, 35-39.
  9. Sathe, B.; Jaychandran, E.; Jagtap, V.; Sreenivasa, G. Synthesis Characterization and Anti-Inflammatory Evaluation of New Fluoro-benzothiazole Schiff’s Bases. Int. J. Pharm. Res. Dev. 2011, 3, 164-169. https://doi.org/10.1155/2013/893512
  10. Chinnasamy; Sundararajan, R.; Govindaraj, S. Synthesis, Characterization, and Analgesic Activity of Novel Schiff Base of Isatin Derivatives. J. Adv. Pharm. Technol. Res. 2010, 1, 342-347. https://doi.org/10.4103/0110-5558.72428
  11. Chaitanya, M.S.; Nagendrappa, G.; Vaidya, V.P. Synthesis, Biological and Pharmacological Activities of 2-Methyl-4H-Pyrimido[2,1-b][1,3]Benzothiazoles. J. Chem. Pharm. Res. 2010, 2 (3), 206-213. https://www.jocpr.com/abstract/synthesis-biological-and-pharmacological-...
  12. Hodnett, E.M.; Dunn, W.J. Structure-Antitumor Activity Correlation of Some Schiff Bases. J. Med. Chem. 2002, 13, 768-770. https://doi.org/10.1021/jm00298a054
  13. Goel, S.; Gupta, A.; Singh, K.P. Structural and Optical Studies of Polypyrrole Nanostructures. Int. J. Appl. Chem. 2006, 2 (3), 157-168.
  14. Mohindru, A.; Fisher, J.M.; Rabinovitz, M. Bathocuproine Sulphonate: A Tissue Culture-Compatible Indicator of Copper-Mediated Toxicity. Nature 1983, 303, 64-65. https://doi.org/10.1038/303064A0
  15. Thurman, R.B.; Gerba, C.P. The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses. Crit. Rev. Environ. Control 1989, 18, 295-315. https://doi.org/10.1080/10643388909388351
  16. Thakurta, S.; Rizzoli, C.; Butcher, R.J.; Gómez-García, C.J.; Garribba, E.; Mitra, S. Sterically-Controlled Nuclearity in New Copper(II) Complexes with Di-Compartmental Ligands: Formation of Antiferromagnetically Coupled Angular Trimer and Mononuclear Inclusion Complex. Inorg. Chim. Acta 2010, 363, 1395-1403. https://doi.org/10.1016/j.ica.2009.12.053
  17. Mandal, S.; Rout, A.K.; Fleck, M.; Pilet, G.; Ribas, J.; Bandyopadhyay, D. Synthesis, Crystal Structure and Magnetic Characterization of a Series of Four Phenoxo-Bridged Binuclear Manganese(III) Schiff Base Complexes. Inorg. Chim. Acta 2010, 363, 2250-2258. https://doi.org/10.1016/j.ica.2010.03.039
  18. Ge, Y.-Y.; Li, G.-B.; Fang, H.-C.; Zhan, X.-L.; Gu, Z.-G.; Chen, J.-H.; Sun, F.; Cai, Y.-P.; Thallapally, P.K. Auxiliary Ligand-Dependent Assembly of Several Ni/Ni−Cd Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand. Cryst. Growth Des. 2010, 10, 4987-4994. https://doi.org/10.1021/cg101082t
  19. Li, X.-G.; Huang, M.-R.; Duan, W.; Yang, Y.-L. Novel Multi-functional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem. Rev. 2002, 102, 2925-3030. https://doi.org/10.1021/cr010423z
  20. Chen, D.; Martell, A.E. Dioxygen Affinities of Synthetic Cobalt Schiff Base Complexes. Inorg. Chem. 2002, 26, 1026-1030. https://doi.org/10.1021/ic00254a013
  21. Corbert, J.-P.; Mignani, G. Selected Patented Cross-Coupling Reaction Technologies. Chem. Rev. 2006, 106 (7), 2651-2710. https://doi.org/10.1021/cr0505268
  22. Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Thermally Stable Multilared Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-Carbazolyl)Triphenylamine (TCTA) and 4,4′,4″-Tris(3-Methylphenylphenylamino)Triphenylamine (m-MTDATA), as Hole-Transport Materials. Adv. Mater. 1994, 6 (9), 677-679. https://doi.org/10.1002/adma.19940060913
  23. Maiorana, S.; Baldoli, C.; Del Buttero, P.; Di Ciolo, M.; Pa-pagni, A. Aromatic Nucleophilic Substitution on Haloarene Chro-mium Tricarbonyl Complexes: Mild N-Arylation on Indoles. Syn-thesis 1998, 5, 735-738. https://doi.org/10.1055/S-1998-2058
  24. Hu, N.-X.; Xie, S.; Popovic, Z.; Ong, B.; Hor, A.-M.; Wang, S. 5,11-Dihydro-5,11-Di-1-Naphthylindolo[3,2-b]Carbazole:  Atropisomerism in a Novel Hole-Transport Molecule for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 1999, 121, 5097-5098. https://doi.org/10.1021/ja9906554
  25. Kiyomori, A.; Marcoux, J.F.; Buchwald, S.L. An Efficient Copper-Catalyzed Coupling of Aryl Halides with Imidazoles. Te-trahedron Lett. 1999, 40 (14), 2657-2660. https://doi.org/10.1016/S0040-4039(99)00291-9
  26. Smith, W.J.; Sawyer, J.S. A Novel and Selective Method for the N-Arylation of Indoles Mediated by KFAl2O3. Tetrahedron Lett. 1996, 37 (3), 299-302. https://doi.org/10.1016/0040-4039(95)02157-4
  27. Heidarizadeh, F.; Majdi-Nasab, A. A Green, Homogeneous and Reusable Surfactant/Copper Based Ionic Liquid for the N-Arylation of Indoles, Pyrazoles and Imidazoles. Tetrahedron Lett. 2015, 56 (46), 6360-6363. https://doi.org/10.1016/j.tetlet.2015.09.128
  28. Anbu, N.; Dhakshinamoorthy, A. Cu3(BTC)2 Metal-Organic Framework Catalyzed N-Arylation of Benzimidazoles and Imida-zoles with Phenylboronic Acid. J. Ind. Eng. Chem. 2018, 65, 120-126. https://doi.org/10.1016/j.jiec.2018.04.020
  29. Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-Catalyzed C-H Functionalization Reactions: Efficient Synthesis of Heterocycles. Chem. Rev. 2015, 115 (3), 1622-1651. https://doi.org/10.1021/cr500410y
  30. Klapars, A.; Huang, X.; Buchwald, S.L. A General and Effi-cient Copper Catalyst for the Amidation of Aryl Halides. J. Am. Chem. Soc. 2002, 124 (25), 7421-7428. https://doi.org/10.1021/ja0260465
  31. Lu, Z.; Twieg, R. J. Copper-Catalyzed Aryl Amination in Aqueous Media with 2-Dimethylaminoethanol Ligand. Tetrahedron Lett. 2005, 46 (17), 2997-3001. https://doi.org/10.1016/j.tetlet.2005.03.027
  32. Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-Catalyzed Aryla-tion of Amines Using Diphenyl Pyrrolidine-2-Phosphonate as the New Ligand. J. Org. Chem. 2005, 70 (20), 8107-8109. https://doi.org/10.1021/jo051221w
  33. Zhang, H.; Cai, Q.; Ma, D. Amino Acid Promoted CuI-Catalyzed C-N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem. 2005, 70 (13), 5164-5173. https://doi.org/10.1021/jo0504464
  34. Chen, Y.J.; Chen, H.H. 1,1,1-Tris(Hydroxymethyl)Ethane as a New, Efficient, and Versatile Tripod Ligand for Copper-Catalyzed Cross-Coupling Reactions of Aryl Iodides with Amides, Thiols, and Phenols. Org. Lett. 2006, 8 (24), 5609-5612. https://doi.org/10.1021/ol062339h
  35. Liu, P.; Feng, X.-J.; He, R. Salen and Half-Salen Palladium (II) Complexes: Synthesis, Characteriztion and Catalytic Activity toward Suzuki-Miyaura Reaction. Tetrahedron, 2010, 66, 631-636. https://doi.org/10.1016/j.tet.2009.11.072
  36. Lubenets, V.; Karpenko, O.; Ponomarenko, M.; Zahoriy, G.; Krychkovska, A.; Novikov, V. Development of New Antimicrobial Compositions of Thiosulfonate Structure. Chem. Chem. Technol. 2013, 7 (2), 119-124. https://doi.org/10.23939/chcht07.02.119
  37. Fraser, C.; Bosnich, B. Bimetallic Reactivity. Investigation of Metal-Metal Interaction in Complexes of a Chiral Macrocyclic Binucleating Ligand Bearing 6-and 4-Coordinate Sites. Inorg. Chem. 1994, 33 (2), 338-346. https://doi.org/10.1021/ic00080a024
  38. Lever, A.B.P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, 1984.
  39. Tas, E.; Kilic, A.; Konak, N.; Yilmaz, I. The Sterically Hin-dered Salicylaldimine Ligands with Their Copper (II) Metal Com-plexes: Synthesis, Spectroscopy, Electrochemical and Thin-Layer Spectroelectrochemical. Polyhedron 2008, 27, 1024-1032. https://doi.org/10.1016/j.poly.2007.11.038
  40. Abdlseed, F.A.; El-ajaily, M.M. Preparation and Spectroscopic Investigation of a Schiff Base Metal Complexes. Int. J. Pharm. Tech. Res. 2009, 1 (4), 1097-1103. https://sphinxsai.com/ PTVOL4/pdf_vol4/PT=21%20(1097-1103).pdf
  41. Chen, H.-H.; Huang, H.-M.; Chen, S.-C.; Chen, Y.-J. Highly Efficient CuI-Catalyzed N-Arylation of Azaheterocycles with Aryl Iodides Using 1,1,1-Tris(Hydroxymethyl)Ethane as a Tridentate O-Donor Ligand: A Shorter Route to Toloxatone and Formal Synthesis of Linezolid. J. Chin. Chem. Soc. 2010, 57, 14-18. https://doi.org/10.1002/jccs.201000002
  42. Swapna, K.; Murthy, S.N.; Nageswar, Y.V.D. Copper Iodide as a Recyclable Catalyst for Buchwald N-Arylation. Eur. J. Org. Chem. 2010, 2010 (34), 6678-6684. https://doi.org/10.1002/ejoc.201000964
  43. Yang, Q.; Wang, Y.; Yang, L.; Zhang, M. N-Arylation of Heterocycles Promoted by Tetraethylenepentamine in Water. Tetra-hedron, 2013, 69, 6230-6233. https://doi.org/10.1016%2Fj.tet.2013.05.027
  44. Wang, H.; Li, Y.; Sun, F.; Feng, Y.; Jin, K.; Wang, X. 1,2,3,4-Tetrahydro-8-Hydroxyquinoline-Promoted Copper-Catalyzed Coupling of Nitrogen Nucleophiles and Aryl Bromides. J. Org. Chem. 2008, 73, 8639-8642. https://doi.org/10.1021/jo8015488
  45. Begtrup, M.; Elguero, J.; Faure, R.; Camps, P.; Estopá, C.; Ilavský, D.; Fruchier, A.; Marzin, C.; de Mendoza, J. Effect of N-Substituents on the 13C NMR Parameters of Azoles. Magn. Reson. Chem. 1988, 26, 134-151. https://doi.org/10.1002/mrc.1260260210
  46. Meshram, H.; Reddy, B.; Palakuri, R.; Rao, N.N. An Efficient and Improved Protocol for the N-Arylation of N-Heteroaryls Using Ionic Liquid as a Reaction Media. Der Pharma Chemica 2012, 4 (4), 1544-1551. https://www.derpharmachemica.com/pharma-chemica/an-efficient-and-improve...
  47. Hu, K.; Niyazymbetov, M. E.; Evans, D. H. Nucleophilic Aromatic Substitution by Paired Electrosynthesis: Reactions of Methoxy Arenes with 1H-Tetrazoles. Tetrahedron Lett. 1995, 36, 7027-7030. https://doi.org/10.1016/0040-4039(95)01455-Q
  48. Wadia, M.S.; Patil, D.V.A Convenient Preparation of N-Alkyl and N-Arylamines by Smiles Rearrangement - Synthesis of Analo-gues of Diclofenac. Synth. Commun. 2003, 33, 2725-2736. https://doi.org/10.1081/SCC-120021996
  49. Chauhan, S.M.S.; Singh, R.; Geetanjali. An Improved Synthe-sis of N-Substituted-2-Nitroanilines. Synth. Commun. 2003, 33, 2899-2906. https://doi.org/10.1081/SCC-120022180
  50. Kim, J.; Kim, S.; Kwag, H.J.; Park, S.H. Method for Prepara-tion of 4,4′-Dinitrodiphenylamine and 4,4′-Bis(Alkylamino)Diphenylamine by Using 4-Nitroaniline. U.S. Patent US8759587B2, June 24, 2014.
  51. Kim, A.Y.; Lee, H.J.; Chan Park, J.; Kang, H.; Yang, H.; Song, H.; Park, K.H. Highly Efficient and Reusable Copper-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles with Aryl Halides. Molecules 2009, 14, 5169-5178. https://doi.org/10.3390/molecules14125169
  52. Antilla, J.C.; Baskin, J.M.; Barder, T.E.; Buchwald, S.L. Copper-Diamine-Catalyzed N-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles, and Triazoles. J. Org. Chem. 2004, 69, 5578-5587. https://doi.org/10.1021/jo049658b
  53. Sobhani, S.; Pordel, M.; Beyramabadi, S.A. Design, Synthesis, Spectral, Antibacterial Activities and Quantum Chemical Calculations of New Cu(II) Complexes of Heterocyclic Ligands. J. Mol. Struct. 2019, 1175, 677-685. https://doi.org/10.1016/j.molstruc.2018.08.034
  54. Xu, Y.; Shi, Y.; Lei, F.; Dai, L. A Novel and Green Cellulose-Based Schiff Base-Cu (II) Complex and Its Excellent Antibacterial Activity. Carbohydr. Polym. 2020, 230, 115671. https://doi.org/10.1016/j.carbpol.2019.115671
  55. Pan, Y.-Q.; Zhang, Y. Y.; Yu, M.; Zhang, Y.Y.; Wang, L. Newly Synthesized Homomultinuclear Co (II) and Cu (II) Bissala-mo-like Complexes: Structural Characterizations, Hirshfeld Analys-es, Fluorescence and Antibacterial Properties. Appl. Organomet. Chem. 2020, 34, e5441. https://doi.org/10.1002/aoc.5441