Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites

: pp. 521 - 531
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
L.V. Pysarzhevski Institute of Physical Chemistry of the National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
National Pedagogical Dragomanov University
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine

Based on Transcarpathian zeolite the catalysts in calcium-lanthanum-ammonium form were synthesized and modified by steaming and dealumination with ethylenediaminetetraacetic acid. The samples were characterized by using nitrogen adsorption/desorption, XRD, XRF, and FTIR-spectroscopy. The yield of 5 hydroxymethylfurfural over modified samples at 433 K was found to be 50 and 83% at a practically full conversion of fructose.

[1] Mittal, A.; Pilath, H.M.; Johnson, D.K. Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5 Hydroxymethylfurfural (HMF) and Furfural. Energy Fuels 2020, 34, 3284-3293.
[2] Wozniak, B.; Tin, S.; de Vries, J.G. Bio-Based Building Blocks from 5-Hydroxymethylfurfural via 1-Hydroxyhexane-2,5-dione as Intermediate. Chem. Sci. 2019, 10, 6024-6034.
[3] Fan, W.; Verrier; C.; Queneau, Y.; Popowycz, F. 5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals. Curr. Org. Synth. 2019, 16, 583-614.
[4] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Overview. Catalysts 2018, 8, 637.
[5] Chernyshev, V.M.; Kravchenko, O.A.; Ananikov, V.P. Conversion of Plant Biomass to Furan Derivatives and Sustainable Access to the New Generation of Polymers, Functional Materials and Fuels. Russ. Chem. Rev. 2017, 86, 357-387.
[6] Teong, S.P.; Yi, G.; Zhang, Y. Hydroxymethylfurfural Production from Bioresources: Past, Present and Future. Green Chem. 2014, 16, 2015-2026.
[7] Muranaka, Y.; Matsubara, K.; Maki, T.; Asano, S.; Nakagawa, H.; Mae, K. 5-Hydroxymethylfurfural Synthesis from Monosaccharides by a Biphasic Reaction–Extraction System Using a Microreactor and Extractor. ACS Omega 2020, 5, 9384-9390.
[8] Agutaya, J.K.C.N.; Inoue, R.; Tsie, S.S.V.; Quitain A.T.; de la Peña-García, J.; Pérez-Sánchez, H.; Sasaki, M.; Kida, T. Metal-Free Synthesis of HMF from Glucose Using the Supercritical CO2–Subcritical H2O–Isopropanol System. Ind. Eng. Chem. Res. 2020, 59, 16527-16538.
[9] Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass: Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory: Golden, CO, 2004.
[10] Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a Building Block Platform: Biological Properties, Synthesis and Synthetic Applications. Green Chem. 2011, 13, 754-793.
[11] Garber, J.D.; Jones, R.E. Production of 5-hydroxymethylfurfural. US624224A, March 22, 1960.
[12] Kläusli, T. AVA Biochem: Commercialising Renewable Platform Chemical 5-HMF. Green Process. Synth. 2014, 3, 235-236.
[13] Kuster, B.F.M. 5-Hydroxymethylfurfural (HMF). A Review Focussing on its Manufacture. Starch 1990, 42, 314-321.
[14] Antal Jr., M.J.; Mok, W.S.L.; Richards, G.N. Mechanism of Formation of 5-(Hydroxymethyl)-2-furaldehyde from D Fructose and Sucrose. Carbohydr. Res. 1990, 199, 91-109.
[15] Mednick, M.L. The Acid-Base-Catalyzed Conversion of Aldohexose into 5-(Hydroxymethyl)-2-furfural. J. Org. Chem. 1962, 27, 398-403.
[16] Moreau, C.; Durand, R.; Razigade, S.; Duhamet, J.; Faugeras, P.; Rivalier, P.; Ros, P.; Avignon, G. Dehydration of Fructose to 5-Hydroxymethylfurfural over H-Mordenites. Appl. Catal. A Gen. 1996, 145, 211-224.
[17] Roman-Leshkov, Y.; Chheda, J.N.; Dumesic, J.A. Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 2006, 312, 1933-1937.
[18] Chheda, J.N.; Roman-Leshkov, Y.; Dumesic, J.A. Production of 5-Hydroxymethylfurfural and Furfural by Dehydration of Biomass-Derived Mono- and Polysaccharides. Green Chem. 2007, 9, 342-350.
[19] Musau, R.M.; Munavu, R.M. The Preparation of 5-Hydroxymethyl-2-furaldehyde (HMF) from D-Fructose in the Presence of DMSO. Biomass 1987, 13, 67-74.
[20] van Putten, R.-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499-1597.
[21] Zakrzewska, M.E.; Bogel-Łukasik, E.; Bogel-Łukasik, R. Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural – A Promising Biomass-Derived Building Block. Chem. Rev. 2011, 111, 397-417.
[22] Molodyy, D.V.; Melnichuk, O.V.; Povazhnyi, V.A. Acid-Base Nanocatalysts for Hydrolysis of Biomass Components in the Aquatic Environment. Catalysis and Petrochemistry 2018, 27, 54-64.
[23] Levytska, S.I. Doslidzennia isomeryzatsii gliukozy u fruktozu na MgO-ZrO2 katalizatori u protochnomu rezhymi. Catalysis and Petrochemistry 2017, 26, 46-53.
[24] Prudius, S.V.; Vyslogusova, N.M.; Brei, V.V. Conversion of D-Fructose into Ethyl Lactate over SnO2-Containing Catalysts. Chemistry, Physics and Technology of Surface 2019, 10, 67-74.
[25] Prudius, S.V.; Ges, N.L.; Mylin, A.M.; Brei, V.V. Conversion of Fructose into Methyl Lactate over SnO2/Al2O3 Catalyst in Flow Regime. Catalysis and Petrochemistry 2020, 30, 43-47.
[26] Patrylak, L.K.; Bartosh, P.I. Mechanism of the Alkylation of Isobutane by Butenes on Zeolite Catalysts. Theor. Exp. Chem. 2003, 39, 177-183.
[27] Patrylak, L.K.; Yakovenko, A.V. Alkylation of Isobutane with Butenes under Microcatalytic Conditions In Pulse Mode. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 55-61.
[28] Patrylak, K.I.; Patrylak, L.K.; Voloshyna, Yu.G.; Manza, I.A.; Konovalov, S.V. Distribution of the Products from the Alkylation of Isobutane with Butenes at a Zeolite Catalyst and the Reaction Mechanism. Theor. Exp. Chem. 2011, 47, 205-212.
[29] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5 Hydroxymethylfurfural on Large-Pore Zeolites. EasternEuropean J. Enterp. Technol. 2021, 2(6 (110), 38-44.
[30] Sabadash, V.; Mylanyk O.; Matsuska, O.; Gumnitsky J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462.
[31] Prelina, B.; Wardana, J.; Isyatir, R.A.; Syukriyah, Z.; Wafiroh, S.; Raharjo, Y., Wathoniyyah, M., Widati, A.A., Fahmi, M.Z. Innovation of Zeolite Modified Polyethersulfone Hollow Fibre Membrane for Haemodialysis of Creatinine. Chem. Chem. Technol. 2018, 12, 331–336.
[32] Sabadash, V.; Gumnitsky, J.; Hyvlyud, A. Mechanism of Phosphates Sorption by Zeolites Depending on Degree of Their Substitution for Potassium Ions. Chem. Chem. Technol. 2016, 10, 235-240.
[33] Patrylak, L. Chemisorption and the Distribution of Acid Y Zeolite Cumene Cracking Products. Adsorp. Sci. Technol. 2000, 18, 399-408.
[34] Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Lewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications; Academic Press: San Diego, 2012.
[35] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2021, 12, 411-425.
[36] Database of Zeolite Structures. (accessed 2022-10-05).
[37] Grechanovska, O.Ye. Mineralogiia ta umovy utvorennia rodovyshch porodoutvoriuiuchyh tseolitiv Zakarpattia. Avtofer. disert. kand. geol. nauk, Instytut heolohii, mineralohii ta rudoutvorennia im. M.P.Semenenka, Kyiv, 2011.
[38] Sobol, K.; Blikharskyy, Z.; Petrovska, N.; Terlyha, V. Analysis of Structure Formation Peculiarities during Hydration of Oil-Well Cement with Zeolitic Tuff and Metakaolin Additives. Chem. Chem. Technol. 2014, 8, 461-465.
[39] Tsystyshvili, G.V.; Andronikashvili, T.G.; Kirov, G.N.; Filozova, L.D. Prirodnye tseolity; Khimia: Moscow, 1985.
[40] Tarasevich, Yu.I. Prirodnye sorbenty v protsesse ochistki vody; Naukova dumka: Kyiv, 1981.
[41] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882.
[42] Patrylak, K.; Patrylak, L.; Taranookha, O. Oscillatory Adsorption as the Determinant of the Fluctuating Behaviour of Different Heterogeneous Systems. Adsorp. Sci. Technol. 2000, 18, 15-25.