На основі природного цеоліту (Закарпатська обл.) синтезовано каталізатори в кальцій-лантан-амонійній формі, модифіковані парообробкою та деалюмінуванням етилендіамінтетраоцтовою кислотою. Зразки досліджено з використанням адсобрції/десорбції азоту, рентгенофазного, рентгенофлуоресцентного аналізу та ІЧ-спектроскопії з перетворенням Фур’є. Встановлено, що за температури 433 K вихід 5-гідроксиметилфурфуролу на модифікованих зразках становить 50 і 83 % за практично повної конверсії фруктози.
[1] Mittal, A.; Pilath, H.M.; Johnson, D.K. Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5 Hydroxymethylfurfural (HMF) and Furfural. Energy Fuels 2020, 34, 3284-3293. https://doi.org/10.1021/acs.energyfuels.9b04047
[2] Wozniak, B.; Tin, S.; de Vries, J.G. Bio-Based Building Blocks from 5-Hydroxymethylfurfural via 1-Hydroxyhexane-2,5-dione as Intermediate. Chem. Sci. 2019, 10, 6024-6034. https://doi.org/10.1039/C9SC01309A
[3] Fan, W.; Verrier; C.; Queneau, Y.; Popowycz, F. 5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals. Curr. Org. Synth. 2019, 16, 583-614. https://doi.org/10.2174/1570179416666190412164738
[4] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Overview. Catalysts 2018, 8, 637. https://doi.org/10.3390/catal8120637
[5] Chernyshev, V.M.; Kravchenko, O.A.; Ananikov, V.P. Conversion of Plant Biomass to Furan Derivatives and Sustainable Access to the New Generation of Polymers, Functional Materials and Fuels. Russ. Chem. Rev. 2017, 86, 357-387. https://doi.org/10.1070/RCR4700
[6] Teong, S.P.; Yi, G.; Zhang, Y. Hydroxymethylfurfural Production from Bioresources: Past, Present and Future. Green Chem. 2014, 16, 2015-2026. https://doi.org/10.1039/C3GC42018C
[7] Muranaka, Y.; Matsubara, K.; Maki, T.; Asano, S.; Nakagawa, H.; Mae, K. 5-Hydroxymethylfurfural Synthesis from Monosaccharides by a Biphasic Reaction–Extraction System Using a Microreactor and Extractor. ACS Omega 2020, 5, 9384-9390. https://doi.org/10.1021/acsomega.0c00399
[8] Agutaya, J.K.C.N.; Inoue, R.; Tsie, S.S.V.; Quitain A.T.; de la Peña-García, J.; Pérez-Sánchez, H.; Sasaki, M.; Kida, T. Metal-Free Synthesis of HMF from Glucose Using the Supercritical CO2–Subcritical H2O–Isopropanol System. Ind. Eng. Chem. Res. 2020, 59, 16527-16538. https://doi.org/10.1021/acs.iecr.0c03551
[9] Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass: Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory: Golden, CO, 2004. https://doi.org/10.2172/15008859
[10] Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a Building Block Platform: Biological Properties, Synthesis and Synthetic Applications. Green Chem. 2011, 13, 754-793. https://doi.org/10.1039/C0GC00401D
[11] Garber, J.D.; Jones, R.E. Production of 5-hydroxymethylfurfural. US624224A, March 22, 1960.
[12] Kläusli, T. AVA Biochem: Commercialising Renewable Platform Chemical 5-HMF. Green Process. Synth. 2014, 3, 235-236. https://doi.org/10.1515/gps-2014-0029
[13] Kuster, B.F.M. 5-Hydroxymethylfurfural (HMF). A Review Focussing on its Manufacture. Starch 1990, 42, 314-321. https://doi.org/10.1002/star.19900420808
[14] Antal Jr., M.J.; Mok, W.S.L.; Richards, G.N. Mechanism of Formation of 5-(Hydroxymethyl)-2-furaldehyde from D Fructose and Sucrose. Carbohydr. Res. 1990, 199, 91-109. https://doi.org/10.1016/0008-6215(90)84096-D
[15] Mednick, M.L. The Acid-Base-Catalyzed Conversion of Aldohexose into 5-(Hydroxymethyl)-2-furfural. J. Org. Chem. 1962, 27, 398-403. https://doi.org/10.1021/jo01049a013
[16] Moreau, C.; Durand, R.; Razigade, S.; Duhamet, J.; Faugeras, P.; Rivalier, P.; Ros, P.; Avignon, G. Dehydration of Fructose to 5-Hydroxymethylfurfural over H-Mordenites. Appl. Catal. A Gen. 1996, 145, 211-224. https://doi.org/10.1016/0926-860X(96)00136-6
[17] Roman-Leshkov, Y.; Chheda, J.N.; Dumesic, J.A. Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 2006, 312, 1933-1937. https://doi.org/10.1126/science.1126337
[18] Chheda, J.N.; Roman-Leshkov, Y.; Dumesic, J.A. Production of 5-Hydroxymethylfurfural and Furfural by Dehydration of Biomass-Derived Mono- and Polysaccharides. Green Chem. 2007, 9, 342-350. https://doi.org/10.1039/B611568C
[19] Musau, R.M.; Munavu, R.M. The Preparation of 5-Hydroxymethyl-2-furaldehyde (HMF) from D-Fructose in the Presence of DMSO. Biomass 1987, 13, 67-74. https://doi.org/10.1016/0144-4565(87)90072-2
[20] van Putten, R.-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499-1597. https://doi.org/10.1021/cr300182k
[21] Zakrzewska, M.E.; Bogel-Łukasik, E.; Bogel-Łukasik, R. Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural – A Promising Biomass-Derived Building Block. Chem. Rev. 2011, 111, 397-417. https://doi.org/10.1021/cr100171a
[22] Molodyy, D.V.; Melnichuk, O.V.; Povazhnyi, V.A. Acid-Base Nanocatalysts for Hydrolysis of Biomass Components in the Aquatic Environment. Catalysis and Petrochemistry 2018, 27, 54-64. http://kataliz.org.ua/index.php/journal/article/view/56
[23] Levytska, S.I. Doslidzennia isomeryzatsii gliukozy u fruktozu na MgO-ZrO2 katalizatori u protochnomu rezhymi. Catalysis and Petrochemistry 2017, 26, 46-53.
[24] Prudius, S.V.; Vyslogusova, N.M.; Brei, V.V. Conversion of D-Fructose into Ethyl Lactate over SnO2-Containing Catalysts. Chemistry, Physics and Technology of Surface 2019, 10, 67-74. https://doi.org/10.15407/hftp10.01.067
[25] Prudius, S.V.; Ges, N.L.; Mylin, A.M.; Brei, V.V. Conversion of Fructose into Methyl Lactate over SnO2/Al2O3 Catalyst in Flow Regime. Catalysis and Petrochemistry 2020, 30, 43-47. https://doi.org/10.15407/kataliz2020.30.043
[26] Patrylak, L.K.; Bartosh, P.I. Mechanism of the Alkylation of Isobutane by Butenes on Zeolite Catalysts. Theor. Exp. Chem. 2003, 39, 177-183. https://doi.org/10.1023/A:1024989108762
[27] Patrylak, L.K.; Yakovenko, A.V. Alkylation of Isobutane with Butenes under Microcatalytic Conditions In Pulse Mode. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 55-61. https://doi.org/10.32434/0321-4095-2021-134-1-55-61
[28] Patrylak, K.I.; Patrylak, L.K.; Voloshyna, Yu.G.; Manza, I.A.; Konovalov, S.V. Distribution of the Products from the Alkylation of Isobutane with Butenes at a Zeolite Catalyst and the Reaction Mechanism. Theor. Exp. Chem. 2011, 47, 205-212. https://doi.org/10.1007/s11237-011-9205-y
[29] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5 Hydroxymethylfurfural on Large-Pore Zeolites. EasternEuropean J. Enterp. Technol. 2021, 2(6 (110), 38-44. https://doi.org/10.15587/1729-4061.2021.226575
[30] Sabadash, V.; Mylanyk O.; Matsuska, O.; Gumnitsky J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462. https://doi.org/10.23939/chcht11.04.459
[31] Prelina, B.; Wardana, J.; Isyatir, R.A.; Syukriyah, Z.; Wafiroh, S.; Raharjo, Y., Wathoniyyah, M., Widati, A.A., Fahmi, M.Z. Innovation of Zeolite Modified Polyethersulfone Hollow Fibre Membrane for Haemodialysis of Creatinine. Chem. Chem. Technol. 2018, 12, 331–336. https://doi.org/10.23939/chcht12.03.331
[32] Sabadash, V.; Gumnitsky, J.; Hyvlyud, A. Mechanism of Phosphates Sorption by Zeolites Depending on Degree of Their Substitution for Potassium Ions. Chem. Chem. Technol. 2016, 10, 235-240. https://doi.org/10.23939/chcht10.02.235
[33] Patrylak, L. Chemisorption and the Distribution of Acid Y Zeolite Cumene Cracking Products. Adsorp. Sci. Technol. 2000, 18, 399-408. https://doi.org/10.1260/0263617001493512
[34] Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Lewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications; Academic Press: San Diego, 2012.
[35] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2021, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1
[36] Database of Zeolite Structures. http://www.iza-structure.org/databases/ (accessed 2022-10-05).
[37] Grechanovska, O.Ye. Mineralogiia ta umovy utvorennia rodovyshch porodoutvoriuiuchyh tseolitiv Zakarpattia. Avtofer. disert. kand. geol. nauk, Instytut heolohii, mineralohii ta rudoutvorennia im. M.P.Semenenka, Kyiv, 2011.
[38] Sobol, K.; Blikharskyy, Z.; Petrovska, N.; Terlyha, V. Analysis of Structure Formation Peculiarities during Hydration of Oil-Well Cement with Zeolitic Tuff and Metakaolin Additives. Chem. Chem. Technol. 2014, 8, 461-465. https://doi.org/10.23939/chcht08.04.461
[39] Tsystyshvili, G.V.; Andronikashvili, T.G.; Kirov, G.N.; Filozova, L.D. Prirodnye tseolity; Khimia: Moscow, 1985.
[40] Tarasevich, Yu.I. Prirodnye sorbenty v protsesse ochistki vody; Naukova dumka: Kyiv, 1981.
[41] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882. https://doi.org/10.1007/s13204-021-01771-1
[42] Patrylak, K.; Patrylak, L.; Taranookha, O. Oscillatory Adsorption as the Determinant of the Fluctuating Behaviour of Different Heterogeneous Systems. Adsorp. Sci. Technol. 2000, 18, 15-25. https://doi.org/10.1260/0263617001493242