Transformation of Hexoses on Natural and Synthetic Zeolites

: pp. 287 - 293
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

A number of zeolite catalysts based on synthetic powder zeolites and natural Ukrainian clinoptilolite as well as mordenite-clinoptilolite zeolite rocks were synthesized. The activity and selectivity of the prepared samples were compared in glucose and fructose dehydration into 5-hydroxymethylfurfural in a dimethyl sulfoxide environment.

  1. Kukhar, V.P. Bioresursy - Potentsialna Syrovyna dlia Promyslovogo Organichnogo Syntezu. Kataliz i Neftekhimia 2007, 15, 1-15 (in Ukrainian).
  2. Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Over-view. Catalysts 2018, 8, 637.
  3. Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226.
  4. Chen, N.; Zhu, Z.; Ma, H.; Liao, W.; Lü, H. Catalytic Upgrad-ing of Biomass-derived 5-Hydroxymethylfurfural to Biofuel 2,5-Dimethylfuran over Beta Zeolite Supported Non-noble Co Catalyst. Mol. Catal. 2020, 486, 110882.
  5. Chithra, P.A.; Darbha, S. Catalytic Conversion of HMF into Ethyl Levulinate - A Biofuel over Hierarchical Zeolites. Catal. Commun. 2020, 140, 105998.
  6. Kläusli, T. AVA Biochem: Commercialising Renewable Plat-form Chemical 5-HMF. Green Process. Synth. 2014, 3, 235-236.
  7. Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 14, 5246-5249.
  8. Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Combined Function of Brönsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. Chem-CatChem. 2016, 8, 3107-3111.
  9. Pienkoss, F.; Ochoa-Hernandez, C.; Theyssen, N.; Leitner, W. Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustain. Chem. Eng. 2018, 6, 8782-8789.
  10. Levytska S.I. Doslidzhennia Izomeryzatsii Glukozy u Fruk-tozu na MgO-ZrO2 Katalizatori v Protochnyh Umovah. Kataliz i Neftekhimia 2017, 26, 46-52 (in Ukraine).
  11. Vieira, J.L.; Almeida-Trapp, M.; Mithöfer, A.; Plass, W.; Gallo, J.M.R. Rationalizing the Conversion of Glucose and Xylose Catalyzed by a Combination of Lewis and Brönsted Acids. Catal. Today 2020, 344, 92-101.
  12. Van Putten, R-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.; Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499-1597.
  13. Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zhu, Y.; Li,Y. Conversion of Carbohydrates to Furfural via Selective Cleavage of the Carbon-Carbon Bond: The Cooperative Effects of Zeolite and Solvent. Green Chem. 2016, 18, 1619-1624.
  14. Cui, M.; Wu, Z.; Huang, R.; Qi, W.; Su, R.; He, Z. Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural. Renew. Energ. 2018, 125, 327-333.
  15. Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities-A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30-36.
  16. Tosi, I.; Riisager, A.; Taarning, E.; Jensen, P.R.; Meier, S. Kinetic Analysis of Hexose Conversion to Methyl Lactate by Sn-Beta: Effects of Substrate Masking and of Water. Catal. Sci. Tech-nol. 2018, 8, 2137-2145.
  17. Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Highly Selective Conversion of Glucose into Furfural over Modified zeolites. Chem. Eng. J. 2017, 307, 868-876.
  18. Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Brönsted and Lewis Acid ZSM-5 Zeolites for the Catalytic Dehydration of Glucose into 5-Hydroxymethylfurfural. Chem. Eng. J. 2016, 303, 22-30.
  19. Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent Ad-vance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural. Renew. Sust. Energ. Rev. 2021, 147, 111253.
  20. Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425.
  21. Dyer, A.; Hriljac, J.; Evans, N.; Stokes I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R. et al. The Use of Columns of the Zeolite Clinoptilolite in the Remediation of Aqueous Nuclear Waste Streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473-2491.
  22. Al-Maliki, S.B.; Al-Khayat, Z.O.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255-258.
  23. Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5-Hydroxymethylfurfural on Large-Pore Zeolites. East.-Eur. J. En-terp. Technol. 2021, 2, 38-44.
  24. Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Yu.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531.
  25. Rouqerol, F.; Rouqerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 1998.
  26. Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882.
  27. Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and Hierarchy of Clinoptilolite Poros-ity. J. Phys. Chem. Solids. 2010, 71, 1269-1277.
  28. Baerlocher, Ch.; Meier, W.M.; Olson, D.N. Atlas of zeolite structure types; Elsevier: Amsterdam, 2007.