Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene

2022;
: pp. 499 - 506
1
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
2
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
3
Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy
4
Department of Macromolecular Chemistry, Ivane Javakhishvili University, Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili University
5
Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy,

Hydrosilylation of triethoxysilane with the mixture of ortho- and para-divinylbenzene in the presen¬ce of Karstedt’s catalyst has been carried out and the corresponding product triethoxy(vinylphenethyl)silane have been obtained. The structure and composition of the obtained product were proved by means of determining molecular mass, molecular refraction, and 1H and 13C NMR spectra data. It was found that the addition reaction proceeds both in ortho-position as well as in para-position. Hydrosilylation proceeds both Markovnikov and anti-Markovnikov rule. Via quantum-chemical calculations using the non-empirical density functional theory (DFT) method, the possible direction of the reaction has been considered.

[1] Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54(2-3), 207-214. https://doi.org/10.1016/S0263-8223(01)00089-7
[2] Demchuk, Yu.; Gunka, V.; Pyshyev, S.; Sidun, Yu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14(2), 251-256. https://doi.org/10.23939/chcht14.02.251
[3] Bashta, B.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8(3), 309-316. https://doi.org/10.23939/chcht08.03.309
[4] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy Containing Derivatives in Bitumen – Polymeric Blends. Chem. Chem. Technol. 2015, 9(1), 69-76. https://doi.org/10.23939/chcht09.01.069
[5] Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour-Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900-1905. https://doi.org/10.1002/app.12864
[6] Torres, F.G.; Cubillas, M.L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005, 24(6), 694-698. https://doi.org/10.1016/j.polymertesting.2005.05.004
[7] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
[8] Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber under Different Chemical Treatment. Mater. Des. 2012, 35, 318-322. https://doi.org/10.1016/j.matdes.2011.09.023
[9] Rosa, S.M.L.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk-Filled-PP Composites – Effect of Maleated PP. Mat. Res. 2009, 12(3), 333-338. https://doi.org/10.1590/S1516-14392009000300014
[10] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, University of Akron, Akron, USA, 2016.
[11] Guy, L.; Pevere, V.; Vidal, T. Use of a Specific Functionalised Organosilicon Compound as a Coupling Agent in an Isoprene Elastomer Composition Including a Reinforcing Inorganic Filler. U.S. 0225233 A1, 2012.
[12] Laikov, D.N.; Ustynyuk, Y.A. PRIRODA-04: A Quantum-Chemical Program Suite. New Possibilities in the Study of Molecular Systems with the Application of Parallel Computing. Russ. Chem. Bull. 2005, 54, 820-826. https://doi.org/10.1007/s11172-005-0329-x
[13] Zhao, Y.; Truhlar, D.G. Density Functional Theory for Reaction Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. J. Chem. Theory Comput. 2011, 7(3), 669-676. https://doi.org/10.1021/ct1006604
[14] Wałęsa, R.; Kupka, T.; Broda, M.A. Density Functional Theory (DFT) Prediction of Structural and Spectroscopic Parameters of Cytosine Using Harmonic and Anharmonic Approximations. Struct. Chem. 2015, 26, 1083–1093. https://doi.org/10.1007/s11224-015-0573-0
[15] Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901. https://doi.org/10.1063/1.4704546
[16] Kirste, B. Applications of Density Functional Theory to Theoretical Organic Chemistry. Chem. Sci. 2016, 7(2), 1000127. DOI: 10.4172/2150-3494.1000127
[17] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11(2), 201-209. https://doi.org/10.23939/chcht11.02.201
[18] Brozowski, Z.K.; Szymanska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1997, 33, 217-224. https://doi.org/10.1016/s1381-5148(97)00045-x
[19] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6, 845-852. https://doi.org/10.1039/C7TA08814K