Квантово-хімічне моделювання реакції гідросилілування дивінілбензену триетоксисиланом

2022;
: cc. 499 - 506
1
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
2
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
3
Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy
4
Department of Macromolecular Chemistry, Ivane Javakhishvili University, Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili University
5
Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy,

Проведено гідросилілування триетоксисиланом суміші орто- і пара-дивінілбезену в присутності каталізатора Карстедта й отримано відповідний продукт – триетокси(вінілфенетил)силан. Будову і склад отриманого продукту підтверджено визначенням молекулярної маси, молекулярною рефракцією, а також даними 1H і 13C ЯМР-спектроскопії. Встановлено, що реакція приєднання відбувається як в орто-, так і в пара-положенні. Гідросилілування відбувається і за правилом Марковникова, і проти правила Марковникова. Можливий напрям реакції розглянуто через квантово-хімічні розрахунки з використанням неемпіричного методу теорії функціонала густини (DFT).

[1] Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54(2-3), 207-214. https://doi.org/10.1016/S0263-8223(01)00089-7
[2] Demchuk, Yu.; Gunka, V.; Pyshyev, S.; Sidun, Yu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14(2), 251-256. https://doi.org/10.23939/chcht14.02.251
[3] Bashta, B.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8(3), 309-316. https://doi.org/10.23939/chcht08.03.309
[4] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy Containing Derivatives in Bitumen – Polymeric Blends. Chem. Chem. Technol. 2015, 9(1), 69-76. https://doi.org/10.23939/chcht09.01.069
[5] Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour-Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900-1905. https://doi.org/10.1002/app.12864
[6] Torres, F.G.; Cubillas, M.L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005, 24(6), 694-698. https://doi.org/10.1016/j.polymertesting.2005.05.004
[7] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
[8] Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber under Different Chemical Treatment. Mater. Des. 2012, 35, 318-322. https://doi.org/10.1016/j.matdes.2011.09.023
[9] Rosa, S.M.L.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk-Filled-PP Composites – Effect of Maleated PP. Mat. Res. 2009, 12(3), 333-338. https://doi.org/10.1590/S1516-14392009000300014
[10] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, University of Akron, Akron, USA, 2016.
[11] Guy, L.; Pevere, V.; Vidal, T. Use of a Specific Functionalised Organosilicon Compound as a Coupling Agent in an Isoprene Elastomer Composition Including a Reinforcing Inorganic Filler. U.S. 0225233 A1, 2012.
[12] Laikov, D.N.; Ustynyuk, Y.A. PRIRODA-04: A Quantum-Chemical Program Suite. New Possibilities in the Study of Molecular Systems with the Application of Parallel Computing. Russ. Chem. Bull. 2005, 54, 820-826. https://doi.org/10.1007/s11172-005-0329-x
[13] Zhao, Y.; Truhlar, D.G. Density Functional Theory for Reaction Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. J. Chem. Theory Comput. 2011, 7(3), 669-676. https://doi.org/10.1021/ct1006604
[14] Wałęsa, R.; Kupka, T.; Broda, M.A. Density Functional Theory (DFT) Prediction of Structural and Spectroscopic Parameters of Cytosine Using Harmonic and Anharmonic Approximations. Struct. Chem. 2015, 26, 1083–1093. https://doi.org/10.1007/s11224-015-0573-0
[15] Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901. https://doi.org/10.1063/1.4704546
[16] Kirste, B. Applications of Density Functional Theory to Theoretical Organic Chemistry. Chem. Sci. 2016, 7(2), 1000127. DOI: 10.4172/2150-3494.1000127
[17] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11(2), 201-209. https://doi.org/10.23939/chcht11.02.201
[18] Brozowski, Z.K.; Szymanska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1997, 33, 217-224. https://doi.org/10.1016/s1381-5148(97)00045-x
[19] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6, 845-852. https://doi.org/10.1039/C7TA08814K