Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base

: pp. 325 - 338
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy
Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy,
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University

Friedel-Crafts alkylation reaction of vinyltri-methoxysilane with styrene was performed in the pres-ence of anhydrous AlCl3. Alkoxy(4-vinylphenethyl)silane has been obtained. The synthesized products were identified by 1H, 13C, COSY NMR, and FTIR spectroscopy. Calculations using the quantum-chemical non-empirical density functional theory (DFT) method for the reaction between vinyltrimethoxysilane and styrene performed for ortho-, meta- and para-positions were discussed. For the theoretical modeling an online prediction program "Priroda 04: A quantum-chemical program suite" was used. Composite materials based on wood sawdust with various dispersion qualities and synthesized trimethoxysilylated styrene as a binding and reinforcing agent with degrees of silylation (5 %), in the presence of various organic/inorganic additives, fire retardants, and antioxidants, have been developed at different temperatures and pressures via hot press method or extrusion. The physico-mechanical properties of composites have been investigated.

  1. The Chemistry and Physics of Coatings; Marrion, A., Ed.; The Royal Society of Chemistry: Cambridge, 2004.
  2. Organic Coatings: Science and Technology; Wicks, Z.W., Jones, F.N.; Pappas, S.P.; Wicks, D.A., Eds.; John Wiley & Sons: New Jersey, 2007.
  3. High-performance organic coatings; Khanna, A.S., Ed.; CRC Press: Florida, 2008.
  4. Talbert, R. Paint Technology Handbook; CRC Press: Florida, 2008.
  5. Hybrid Materials: Synthesis, Characterization and Applications; Kickelbick, G., Ed.; WILEY-VCH: Weinheim, 2007.
  6. Tsujimoto, T.; Uyama, H.; Kobayashi, S. Synthesis of High-Performance Green Nanocomposites from Renewable Natural Oils. Polym. Degrad. Stab. 2010, 95, 1399-1405.
  7. Tsujimoto, T.; Uyama, H.; Kobayashi, S. Green Nanocompo-sites from Renewable Resources: Biodegradable Plant Oil-Silica Hybrid Coatings. Macromol. Rapid Commun. 2003, 24, 711-714.
  8. Xia, Y.; Larock, R.C. Vegetable Oil-Based Polymeric Materials: Synthesis, Properties, and Applications. Green Chem. 2010, 12, 1893-1909.
  9. Galià, M.; de Espinosa, L.M.; Ronda, J.C.; Lligadas, G.; Cádiz, V. Vegetable Oil-Based Thermosetting Polymers. Eur. J. Lipid Sci. Technol. 2010, 112, 87-96.
  10. Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Re-sources. Synthesis and Properties. Biomacromolecules 2006, 7, 2420-2426.
  11. Bailey's Industrial Oil and Fat Products. Volume 6. Industrial and Nonedible Products from Oils and Fats; Shahidi, F., Ed.; John Wiley&Sons: New Jersey, 2005.
  12. Tasdelen-Yucedag, C.; Erciyes, A.T. Modification of Polyca-prolactone-Styrene-Vinyl Trimethoxysilane Terpolymer with Sun-flower Oil for Coating Purposes. Prog. Org. Coat. 2014, 77, 1750-1760.
  13. Jingzhou Jianghan Fine Chemical Co Ltd. Synthesis Method of Vinyltrimethoxysilane Oligomer. CN103396434A, November 20, 2013.
  14. Singha, A.S.; Rana, R.K. Natural Fiber Reinforced Polystyrene Composites: Effect of Fiber Loading, Fiber Dimensions and Surface Modification on Mechanical Properties. Mater. Des. 2012, 41, 289-297.
  15. Sreenivasan, V.S.; Ravindran, D.; Manikandan, V.; Narayana-samy, R. Influence of Fibre Treatments on Mechanical Properties of Short Sansevieria cylindrica/Polyester Composites. Mater. Des. 2012, 37, 111-121.
  16. Arrakhiz, F.Z.; El Achaby, M.; Kakou, A.C.; Vaudreuil, S.; Benmoussa, K.; Bouhfid, R.; Fassi-Fehri, O.; Qaiss, A. Mechanical Properties of High Density Polyethene Reinforced with Chemically Modified Coir Fibers: Impact of Chemical Treatments. Mater. Des. 2012, 37, 379-383.
  17. Massoodi, R.; El Hajjar, R.F.; Pillai, K.M.; Sabo, R. Mechani-cal Characterization of Cellulose Nanofiber and Biobased Epoxy Composites. Mater. Des. 2012, 36, 570-576.
  18. Yang, H.S.; Kim, H.J.; Park, H.J.; Lee, B.J.; Hwang, T.S. Effect of Compatibility Agents on Rice Husk Flour Reinforced Polypropylene Composites. Compos. Struct. 2007, 77, 45-55.
  19. Kim, H.-S.; Yang, H.-S.; Kim, H.-J. Biodegradability and Mechanical Properties of Agro Flour Filled Polybutylene Succinate Biocomposites. J. Appl. Polym. Sci. 2005, 97, 1513-1521.
  20. Torres, F.G.; Cubillas, M.L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005, 24, 694-698.
  21. Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber under Different Chemical Treatment. Mater. Des. 2012, 35, 318-322.
  22. Amin, S.; Amin, M. Thermoplastic Elastomeric (TPE) Mate-rials and their Use in Outdoor Electrical Insulation. Rev. Adv. Mater. Sci. 2011, 29, 15-30.
  23. Biron, M. Thermoplastics and Thermoplastic Composites. Technical Information for Plastics Users; Oxford: Butterworth-Heinemann, 2007.
  24. Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54, 207-214.
  25. Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour-Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900-1905.
  26. Katz, H.S.; Milevski, J.V. Handbook of Fillers for Plastics; RAPRA: New York, 1987.
  27. Mareri, P.; Bastide, S.; Binda, N.; Crespi, A. Mechanical Behaviour of Polypropylene Composites Containing Fine Mineral Filler: Effect of Filler Surface Treatment. Compos. Sci. Technol. 1998, 58, 747-752.
  28. Rosa, S.M.L.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk-Filled-PP Composites: Effect of Maleated PP. Mater. Res. 2009, 12, 333.
  29. Tatrishvili, T.; Koberidze, Kh.; Mukbaniani, O. Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Proceedings of the Georgian National Academy of Sciences 2007, 35, 297-300.
  30. Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calcula-tions for Hydrosilylation Reaction of Methyldimethoxysilane with Hexane-1. Proceedings of the Georgian Academy of Science 2006, 32, 109-114.
  31. Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O. AM1 Calcula-tions for Hydride Addition Reaction of Methyldimethoxysilane with Styrene. Georgian Chemical Journal 2006, 6, 58-59.
  32. Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S. Hydrosilylation Reactions of α,ω-Bis(trimethylsiloxy) methylhydri-desiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal 2006, 6, 254-255.
  33. Zhao, Y.; Truhlar, D.G. Density Functional Theory for Reac-tion Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. J. Chem. Theory Comput. 2011, 7, 669-676.
  34. Wałęsa, R.; Kupka, T.; Broda, M.A. Density Functional Theory (DFT) Prediction of Structural and Spectroscopic Parameters of Cytosine Using Harmonic and Anharmonic Approximations. Struct. Chem. 2015, 26, 1083-1093.
  35. Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901.
  36. Kirste, B. Applications of Density Functional Theory to Theo-retical Organic Chemistry. Chem. Sci. 2016, 7, 1000127.
  37. Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209.
  38. Mukbaniani, O.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Pachulia, Z.; Pirtskheliani. N. Synthesis of Trie-thoxy(Vinylphenethyl)Silane with Alkylation Reaction of Vinyltrie-thoxysilane to Styrene. Oxid. Commun. 2022, 45, 309-320.
  39. Demchuk, Yu.; Gunka, V.; Pyshyiv, S.; Sidun, Yu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256.
  40. Bashta, B.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8, 309-316.
  41. Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phe-nomenon during Drop Impact Testing and Its Simple Dynamics Model. World Journal of Mechanics 2015, 5, 33-41.
  42. Titvinidze, G.; Tatrishvili, T.; Mukbaniani, O. Chemical Mod-ification of Styrene with Vinyl Containing Organosiloxane via Diels-Alder Reactions. Abstracts of Communications of Interna-tional Conference Enikolopov's Readings, Erevan, Armenia, 4-7 October, 2006; p. 74.
  43. Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, USA, 2016.
  44. Guy, L.; Pevere, V.; Vidal, T. Use of a Specific Functionalised Organosilicon Compound as a Coupling Agent in an Isoprene Elastomer Composition Including a Reinforcing Inorganic Filler. US 0225233A1, 2012.
  45. Smith, B.C. Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy 2016, 31, 36-39.
  48. ChemBioDraw Ultra 12.[31]. [30]. chemofficepc?fbclid=IwAR2M_sx_7vTofwMAugXMb0M4xbyylkyHa4xt0jcRdrETOC8qDtpmSHjdudA
  49. MestreNova.
  50. Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Markarashvili, E.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506.
  51. Febrianto, F.; Yoshioka, M.; Nagai, Y.; Mihara, M.; Shiraishi, N. Composites of Wood and Trans-1,4-isoprene Rubber II: Processing Conditions for Production of the Composites. Wood Sci. Technol. 2001, 35, 297-310.
  52. Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377-386.
  53. Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Trie-thoxy(Vinylphenethyl)Silane. Chem. Chem. Technol. 2023, 17, 35-44.
  54. Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Educ. 2012, 34, 69-94.