Activation of Mo2B Catalyst in the Epoxidation Reaction of α-Ethylallyl Ethyl Acrylate with tert-Butyl Hydroperoxide

2023;
: pp. 18 - 23
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

The regularities of Mo2B catalyst activation in the epoxidation reaction of $\alpha$-ethylallyl ethyl acrylate with tert-butyl hydroperoxide have been studied. It has been shown that the catalyst activation process is described by the Avrami-Erofeev topokinetic equation and  includes two successive stages – the nucleation and formation of a new phase active in the epoxidation reaction. The forma- tion of epoxy only occurs in the presence of the activated form of the catalyst. The effective and topochemical process constants have been calculated.

  1. Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part II: Application of Carboxy-Containing Peroxy Oligomer (CPO). Materials 2021, 14, 1285. https://doi.org/10.3390/ma14051285
  2. Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
  3. Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Kusinska-Lipka, J. Epoxy Composites Filled with Natural Calcium Carbonate. 2. Epoxy Composites Obtained in the Presence of Monomethacrylic Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2020, 14, 343-352. https://doi.org/10.23939/chcht14.03.343
  4. Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Ivashkiv, O. Epoxy Composites Filled with Natural Calcium Carbonate. 1. Epoxy Composites Obtained in the Presence of Monoperoxy Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2019, 13, 360-364. https://doi.org/10.23939/chcht13.03.360
  5. Demchuk, Yu.; Gunka, V.; Pyshyev, S.; Sidun, Iu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
  6. Piesowicz, E.; Irska, I.; Bryll, K.; Gawdzinska, K.; Bratychak, M. Poly(butyleneterephthalate) Carbon Nanotubes Nanocomposites. Part II. Structure and properties. Polimery 2016, 61, 24-30. https://doi.org/10.14314/polimery.2016.024
  7. Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxycontaining Derivatives in Bitumen - Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
  8. Bratychak, M.; Bashta, B.; Astakhova, O.; Shyshchak, O.; Zubal, O. Synthesis Mechanism and Properties of Epoxy Resins Modified with Adipic Acid. Chem. Chem. Technol. 2019, 13, 52-58. https://doi.org/10.23939/chcht13.01.052
  9. Bratychak, M.; Ripak, O.; Namiesnik, J.; Shyshchak, O.; Astakhova, O. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 2. Coumarone-Indene Resins with Epoxy Groups. Chem. Chem. Technol. 2018, 12, 93-100. https://doi.org/10.23939/chcht12.01.093
  10. Yamazaki, T.; Iida, M.; Kawasaki-Takasuka, T.; Agou, T. Regio- as well as Stereoselective Epoxide Ring Opening Reactions Using 3,3,3-Trifluoroprop-1 yne. J Fluor Chem. 2022, 257-258, 109971. https://doi.org/10.1016/j.jfluchem.2022.109971
  11. Hanson, K.G.; Lin, C.-H.; Abu-Omar, M.M. Crosslinking of Renewable Polyesters with Epoxides to Form Bio-Based Epoxythermosets. Polymer 2022, 238, 124363. https://doi.org/10.1016/j.polymer.2021.124363
  12. Park, H.-Y.; Yeo, J.-G.; Choi, J.; Choe, G.-B.; Kim, G.-N.; Koh, Y.-H.; Yang, S.C.; Jung, Y.-G. Ceramic Green and Fired Body with a Uniform Microstructure Prepared Using Living Characteristics of Hoto-Curable Cycloaliphatic Epoxide:Applicability of Cycloaliphatic Epoxide in Photo-Polymerization-Based 3Dprinting. J. Eur. Ceram. Soc. 2022, 42, 589-599. https://doi.org/10.1016/j.jeurceramsoc.2021.10.015
  13. Sobani, M.; Soucek, M.D. Low Temperature Fracture Toughness of Polysulfide Modified BPA-Epoxide Primers. Prog. Org. Coat. 2022, 163, 106626. https://doi.org/10.1016/j.porgcoat.2021.106626
  14. Xu, X.; Zhang, D.; Wang, K.; Jia, Y.; Yang, C.; Shen, B.; Lai, C.; Yong, Q. In-situ Lignin Modification with Polyethylene Glycol-Epoxides to Boost Enzymatic Hydrolysis of Combined-Pretreated Masson Pine. Bioresour. Technol. 2022, 344, 126315. https://doi.org/10.1016/j.biortech.2021.126315.
  15. Abu Saleh, SK; Hazra, A.; Hajra, S. Regioselective Hydroperoxylation of Aziridines and Epoxides Only with Aqueous Hydrogen Peroxide. Adv. Synth. Catal. 2022, 364, 391-404. https://doi.org/10.1002/adsc.202100858
  16. Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7
  17. Andringa, R.L.H.; Jonker, M.; Minnaard, A.J. Synthesis of Phosphatidic Acids via Cobalt(Salen) Catalyzed Epoxide Ring-Opening with Dibenzyl Phosphate. Org. Biomol. Chem. 2022, 20, 2200-2204. https://doi.org/10.1039/D2OB00168C
  18. Calderini, E.; Wessel, J.; Süss, Ph.; Schrepfer, P.; Wardenga, R.; Schallmey, A. Selective Ring-Opening of Di-Substituted Epoxides Catalysed by Halohydrin Dehalogenases. ChemCatChem 2019, 11, 2099-2106. https://doi.org/10.1002/cctc.201900103
  19. Sen, R.; Goeppert, A.; Surya Prakash, G.K. Integrated Carbon Capture and Utilization to Methanol with Epoxide-Functionalized Polyamines Under Homogeneous Catalytic Conditions. J. Organomet. Chem. 2022, 965-966, 122331. https://doi.org/10.1016/j.jorganchem.2022.122331
  20. Li, Y.; Zhai, G.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Synergistic Effect between Boron Containing Metal-Organic Frameworks and Light Leading to Enhanced CO2 Cycloaddition with Epoxides. Chem. Eng. J. 2022, 437, 135363. https://doi.org/10.1016/j.cej.2022.135363
  21. Faizan, M.; Srivastav, N.; Pawar, R. Azaboratrane as an Exceptionally Potential Organocatalyst for the Activation of CO2 and Coupling with Epoxide. Mol. Catal. 2022, 521, 112201. https://doi.org/10.1016/j.mcat.2022.112201
  22. Ge, Y.; Cheng, G.; Ke, H. Triethanolamine Borate as Bifunctional Lewis Pair Catalyst for the Cycloaddition of CO2 with Epoxides. J. CO2 Util. 2022, 57, 101873. https://doi.org/10.1016/j.jcou.2021.101873
  23. Yang, X.; Liu, Z.; Chen, P.; Liu, F.; Zhao, T. Effective Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Acetylcholine Bromide-Based Deep Eutectic Solvents. J. CO2 Util. 2022, 58, 101936. https://doi.org/10.1016/j.jcou.2022.101936
  24. Wang, Y.; Liu, Y.; Su, Q.; Li, Y.; Deng, L.; Dong, L.; Fu, M.; Liu, S.; Cheng, W. Poly(Ionic Liquid) Materials Tailored by Carboxyl Groups for the Gas Phase-Conversion of Epoxide and CO2 into Cyclic Carbonates. J. CO2 Util. 2022, 60, 101976. https://doi.org/10.1016/j.jcou.2022.101976
  25. D'Elia, V.; Kleij, A.W. Surface Science Approach to the Heterogeneous Cycloaddition of CO2 to Epoxides Catalyzed by Siteisolated Metal Complexes and Single Atoms: A Review. Green Chemical Engineering 2022, 3, 210-227. https://doi.org/10.1016/j.gce.2022.01.005
  26. Ivashchuk, O. Catalytic Intensification of the Cyclohexane Oxidation. Chem. Chem. Technol. 2017, 11, 430-436. https://doi.org/10.23939/chcht11.04.430
  27. Khalameida, S.; Samsonenko, M.; Sydorchuk, V.; Zakutevskyy, O.; Starchevskyy, V.; Lakhnik, A. Improving the Photocatalytic Properties of Tin Dioxide Doped with Titanium and Copper in the Degradation of Rhodamine B and Safranin T. React. Kinet. Mech. Catal. 2022, 135, 1665-1685. https://doi.org/10.1007/s11144-022-02206-w
  28. Starchevskyy, V.; Shparij, M.; Hrynchuk, Y.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System or the Industrial Chlorine Processing of Ethylene in 1,2-Dichloroethane. Chem. Chem. Technol. 2020, 14, 394-402. https://doi.org/10.23939/chcht14.03.394
  29. Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Modified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
  30. Shpariy, M.; Starchevskyy, V.; Znak, Z.; Mnykh, R.; Poliuzhyn, I. Extraction Of Iron-Containing Catalyst from Chlororganic Wastes Generated by Ethylene Chlorination. East.-Eur. J. Enterp. Technol. 2020, 2/10, 19-26. https://doi.org/10.15587/1729-4061.2020.201696
  31. Khalameida, S.V.; Samsonenko, M.N.; Sydorchuk, V.V.; Starchevskyy, V.L.; Zakutevskyy, O.I.; Khyzhun, O.Yu. Photocatalytic Properties of Tin Dioxide Doped with Chromium(III), Silver and Zinc Compounds in the Oxidation of Organic Substrates by the Action of Visible Light. Theor. Exp. Chem. 2017, 53, 40-46. https://doi.org/10.1007%2Fs11237-017-9499-5
  32. Trach, Yu. Kinetics of the Reaction Between Ethylallyl Ethylacrylate and tert-Butyl Hydroperoxide in the Presence of Molybdenum Catalysts. Pol. J. Chem. 2002, 76, 1323-1332.
  33. Trach, Yu.B.; Nikipanchuk, M.V.; Komarenskaya, Z.M. Reaction Kinetics of the Hydroperoxide Epoxidation of 1-Octene in the Presence of Mo2B. Kinet. Catal. 2004, 45, 504-507. https:// link.springer.com/article/10.1023/B:KICA.0000038077.72162.54
  34. Makota, O.; Wolf, J.; Trach, Yu.; Schulze, B. Epoxidation of Cyclooctene with Hydroperoxy Sultams Catalyzed by Molybdenum Boride. Appl. Catal. A-Gen. 2007, 323, 174-180. https://doi.org/10.1016/j.apcata.2007.02.013
  35. Makota, O.; Eilfeld, A.; Trach, Yu.; Schulze, B.; Sieler, J. Novel Hydroperoxy Sultam, 2-(6-Bromo-pyrid-2-yl)-2,3,4,5,6,7-hexahydro-1,2- benzisothiazol-3-hydroperoxy 1,1-dioxide: Synthesis, Crystal Structure and Kinetics of Catalytic Interaction with Cyclooctene. New J. Chem. 2008, 32, 1020-1026. https://doi.org/10.1039/B717726G
  36. Markevich, V.S.; Ulyanova, V.N.; Loginova, V.A. Oil refining and petrochemistry 1979, 11, 47-48.
  37. Trach, Yu.B.; Nikipanchuk M.V.; Komarenskaya Z.M. Neftekhimiya 2003, 43, 386.
  38. Trach, Yu.B.; Chernii, M.O. Ukrainskii khimichnyi zhurnal 2003, 69, 112-116.
  39. Makota, O.; Trach, Y.; Saldan, I.; Evers, E.; Narayana Kalevaru, V.; Martin, A. Decomposition of tert-Butyl Hydroperoxide in the Presence of Selected Initiators and Catalysts. Chem. Chem. Technol. 2018, 12, 154-157. https://doi.org/10.23939/chcht12.02.154
  40. Trach, Yu.B.; Makota, O.I. Effect of Olefin Concentration on the Degradation of tert-Butyl Hydroperoxide and the Epoxidation of Octene-1 in the Presence of Molybdenum Boride. Pet. Chem. 2005, 45, 327-329.
  41. Trach, Yu.B.; Makota, O.I. The Basic Features of the Hydroperoxide Epoxidation of Ethylallyl Ethacrylate in the Presence of Molybdenum Boride. Neftekhimiya 2004, 44, 52-57.
  42. Pyrig, I.Yu.; Nikipanchuk, M.V.; Chernyak, B.I. Kinet. Catal. 1983, XXIV, 600-605.
  43. Nikipanchuk, M.V.; Komarenskaya, Z.M.; Cherniy, M.O. On the Activation of Mo2B and MoB Catalysts in Oct-1-ene Epoxidation with tert-Butyl Hydroperoxide. Kinet. Catal. 2014, 55, 212-216. https://doi.org/10.1134/S0023158414020062
  44. Nykypanchuk, M.V.; Chernii, M.O.; Komarenskaya, Z.М. The Effect of Reaction Conditions on MoB Activation in 1-Octene Epoxidation with tert_Butyl Hydroperoxide. Kinet. Catal. 2016, 57, 368-372.https://doi.org/10.1134/S0023158416030113
  45. Nykypanchuk, M.V.; Komarenska, Z.М.; Zhukrovska, M.O. Effect of the Phase Composition of Molybdenum Boride on its Catalytic Properties in the Epoxidation of 1-Octene by tert-Butyl Hydroperoxide. Theor. Exp. Chem. 2019, 54, 407-413.https://doi.org/10.1007/s11237-019-09588-4
  46. Trach, Yu.B.; Komarenskaya, Z.M.; Nikipanchuk, M.V.; Pyrig, I.Yu.; Romanyuk, G.V. Hydroperoxide Epoxidation of Ethylallyl Ethylacrylate in the Presence of Mo2B. Theor. Exp. Chem. 2001, 37, 80-83.https://doi.org/10.1023/A:1010445207391
  47. Komarenska, Z.M; Romaniuk, G.V.; Koval, Z.М.; Nikipanchuk, М.V. Vplyv produktiv reaktsii i reaktantiv na pochatkovu shvydkist reaktsii vzaemodii tret-butylhidroperoksydu z etylaliletylakrylatom u prysutnosti Mo2O. Voprosy Khimii i Khimicheskoi Tekhnologii 2010, 4, 25-28.
  48. Milas, N.A.; Surgenor, D.M. Studies in Organic Peroxides. VIII. t-Butyl Hydroperoxide and Di-t-butyl Peroxide. J. Am. Chem. Soc. 1946, 68, 205-208. https://doi.org/10.1021/ja01206a017
  49. Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
  50. Komarenskaya, Z.M.; Chernyak, B.I.; Mishchenko, G.M.; Trach, Yu.B. Chemiluminescence in the Oxidation of Cyclooctene by Molecular Oxygen. Theor. Exp. Chem. 1999, 35, 330-333. https://doi.org/10.1007/BF02522791
  51. Arslanov, V.V.; Sheinina, L.S.; Bulgakova, R.A.; Belomestnykh, A.V. Enhanced Reactivity of the Epoxy Oligomers in Organized Monolayers at the Air-Water Interface. Langmuir 1995, 11, 3953-3958. https://doi.org/10.1021/la00010a054
  52. Hardiman, K.M.; Cooper, C.G.; Adesina, A.A.; Lange, R. Post-mortem characterization of coke-induced deactivated alumina-supported Co-Ni catalysts. Chem. Eng. Sci. 2006, 61, 2565-2573. https://doi.org/10.1016/j.ces.2005.11.021
  53.  Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska,
  54. M.A. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6, 845-852. https://doi.org/10.1039/C7TA08814K