Surface Modification of Gallium Arsenide by Electrochemical Methods in Different Electrolyte Compositions

2023;
: pp. 262 - 271
1
Berdyansk State Pedagogical University
2
Berdyansk State Pedagogical University
3
Berdyansk State Pedagogical University
4
Berdyansk State Pedagogical University
5
Berdyansk State Pedagogical University
6
Berdyansk State Pedagogical University
7
Berdyansk State Pedagogical University

We present the study of the n-GaAs surface modification by the electrochemical etching in different electrolyte compositions. The possibility of forming the different micromorphology types on the identical GaAs samples, in particular the possibility of forming the crystallographic, defective-dislocation, and isotope interfaces, was investigated.

  1. Fiuczek, N.; Sawicka, M.; Feduniewicz-Żmuda, A.; Siekacz, M.; Żak, M.; Nowakowski-Szkudlarek, K.; Muzioł, G.; Wolny, P.; Kelly, J.J.; Skierbiszewski, C. Electrochemical Etching of p-Type GaN Using a Tunnel Junction for Efficient Hole Injection. Acta Mater. 2022, 234, 118018. https://doi.org/10.1016/j.actamat.2022.118018
  2. Suchikova, Ya. Porous Indium Phosphide: Preparation and Properties. In Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques; Springer, 2016; pp 283-306.
  3. Surmeneva, M.A.; Khrapov, D.; Prosolov, K.; Kozadayeva, M.; Koptyug, A.; Volkova, A.; Surmenev, R.A. The Influence of Chemical Etching on Porous Structure and Mechanical Properties of the Ti6AL4V Functionally Graded Porous Scaffolds Fabricated by EBM. Mater. Chem. Phys. 2022, 275, 125217. https://doi.org/10.1016/j.matchemphys.2021.125217
  4. Suchikova, J.A.; Kidalov, V.V.; Sukach, G.A. Preparation of Nanoporous n-InP(100) Layers by Electrochemical Etching in HCI Solution. Funct. Mater. 2010, 17, 131-134.
  5. Sychikova, Y.O.; Bogdanov, I.T.; Kovachov, S.S. Influence of Current Density of Anodizing on the Geometric Characteristics of Nanostructures Synthesized on the Surface of Semiconductors of A3B5 Group and Silicon Funct. Mater. 2019, 27, 29-34. https://doi.org/10.15407/fm27.01.29
  6. Weyher, J.L.; van Dorp, D.H.; Conard, T.; Nowak, G.; Levchenko, I.; Kelly, J.J. Chemical Etching of GaN in KOH Solu-tion: Role of Surface Polarity and Prior Photoetching. J. Phys. Chem. C 2022, 126, 1115-1124. https://doi.org/10.1021/acs.jpcc.1c06528
  7. Çepni, E.; Özer, T.Ö. Electrochemical Deposition of Indium (III) Hydroxide Nanostructures for Novel Battery-Like Capacitive Materials. J. Energy Storage 2022, 45, 103678. https://doi.org/10.1016/j.est.2021.103678
  8. Han, Z.; Zhang, R.; Li, M.; Li, L.; Geng, D.; Hu, W. Recent Advances in Controlled Chemical Vapor Deposition Growth of Bilayer 2D Single Crystals. J. Mater. Chem. C 2022, 10, 13324-13350. https://doi.org/10.1039/D2TC01095J
  9. Heidarpour, A.; Faraji, M.; Haghighi, A. Production and Characterization of Carbide-Derived-Nanocarbon Structures Obtained by HF Electrochemical Etching of Ti3AlC2. Ceram. Int. 2022, 48, 11466-11474. https://doi.org/10.1016/j.ceramint.2022.01.003
  10. Suchikova, Y.A.; Kidalov, V.V.; Sukach, G.A. Influence of Type Anion of Electrolit on Morphology Porous InP Obtained by Electrochemical Etching. Journal of Nano- and Electronic Physics 2009, 1, 78-86.
  11. Roldan, T.; Méndez-Blas, A.; López-Cruz, E.; Calixto, M. E. Semiconducting Cu2Se Thin Films Obtained by Electrochemical Deposition for Possible Applications in Thermoelectric Systems. MRS Adv. 2022, 7, 1-4. https://doi.org/10.1557/s43580-021-00197-9
  12. Çetinel, A. Characterization of Octahedral Cu2O Nanostruc-tures Grown on Porous Silicon by Electrochemical Deposition. Mater. Chem. Phys. 2022, 277, 125532. https://doi.org/10.1016/j.matchemphys.2021.125532
  13. Abouelata, A.M.A.; Attia, A.; Youssef, G.I. Electrochemical Polishing Versus Mechanical Polishing of AISI 304: Surface and Electrochemical Study. J. Solid State Electrochem. 2022, 26, 121-129. https://doi.org/10.1007/s10008-021-05037-2
  14. Suchikova, Y.O. Sulfide Passivation of Indium Phosphide Porous Surfaces. Journal of Nano- and Electronic Physics 2017, 9, 01006. http://dx.doi.org/10.21272/jnep.9(1).01006
  15. Zeng, Y.; Gossage, Z.T.; Sarbapalli, D.; Hui, J.; Rodríguez‐López, J. Tracking Passivation and Cation Flux at Incipient Solid‐Electrolyte Interphases on Multi‐Layer Graphene using High Resolution Scanning Electrochemical Microscopy. ChemElectroChem 2022, 9, e202101445. https://doi.org/10.1002/celc.202101445
  16. Guo, H.; Cao, S.; Li, L.; Zhang, X. A Review on the Main-stream Through-Silicon via Etching Methods. Mater. Sci. Semicond. Process. 2022, 137, 106182. https://doi.org/10.1016/j.mssp.2021.106182
  17. Suchikova, Y.A.; Kidalov, V.V.; Sukach, G.A. Influence of the Carrier Concentration of Indium Phosphide on the Porous Layer Formation. Journal of Nano- and Electronic Physics 2010, 2, 75-81.
  18. Vambol, S.; Vambol, V.; Suchikova, Y.; Deyneko, N. Analysis of the Ways to Provide Ecological Safety for the Products of Nanotechnologies Throughout their Life Cycle. East.-Eur. J. Enterp. Technol. 2017, 1, 27-36. https://doi.org/10.15587/1729-4061.2017.85847
  19. Ge, D.; Rezk, A.; Zhao, C.; Hu, Z.; Zhang, L. Experimental Research on Damage and Formation Limits on Porous Silicon Materials by Electrochemical Etching Method. J. Mater. Res. 2022, 37, 876-886. https://doi.org/10.1557/s43578-021-00471-4
  20. Dawood, N.S.; Zayer, M.Q.; Jawad, M.F. Study of the Vacuum Pressure Sensing from the Electrical Resistance Response of Porous Silicon Fabricated via Photo-Electrochemical. Journal of Applied Sciences and Nanotechnology 2022, 2, 28-36. https://doi.org/10.53293/jasn.2021.3763.1041
  21. Shushanian, A.; Iida, D.; Zhuang, Z.; Han, Y., Ohkawa, K. Analysis of the n-GaN Electrochemical Etching Process and its Mechanism in Oxalic Acid. RSC Adv. 2022, 12, 4648-4655. https://doi.org/10.1039/D1RA07992A
  22. Suchikova, Y.A.; Kidalov, V.V.; Sukach, G.A. Influence of Dislocations on the Process of Pore Formation in n-InP (111) Single Crystals. Semiconductors 2011, 45, 121-124. https://doi.org/1134/S1063782611010192
  23. Atrashchenko, A.V.; Katz, V.N.; Ulin, V.P.; Evtikhiev, V.P.; Kochereshko, V.P. Fabrication and Optical Properties of Porous InP Structures. Physica E Low Dimens. Syst. Nanostruct. 2012, 44, 1324-1328. https://doi.org/10.1016/j.physe.2012.02.012
  24. Karipbayev, Z.T.; Kumarbekov, K.; Manika, I.; Dauletbekova, A; Kozlovskiy, A.; Sugak, D.; Ubizskii, S.; Akilbekov, A.; Suchi-kova, Y., Popov, A.I. Optical, Structural, and Mechanical Proper-ties of Gd3Ga5O12 Single Crystals Irradiated with 84Kr+ Ions. Phys. Status Solidi B Basic Res. 2022, 259, 2100415. https://doi.org/10.1002/pssb.202100415
  25. Popov, A.I.; Balanzat, E.F Centre Production in CsI and CsI-Tl Crystals under Kr Ion Irradiation at 15 K. Nucl. Instrum. Methods Phys. Res. B 2000, 166, 545-549. https://doi.org/10.1016/S0168-583X(99)00789-2
  26. Cao, X.; Zhang, Y.; Ma, C.; Wang, Y.; Brechtken, B.; Haug, R. J.; Rugeramigabo, E.P.; Zopf, M.; Ding, F. Local Droplet Etching on InAlAs/InP Surfaces with InAl Droplets. AIP Adv. 2022, 12, 055302. https://doi.org/10.1063/5.0088012
  27. Kovachov, S.S.; Bogdanov, I.T.; Pimenov, D.O.; Bondarenko, V.; Konovalenko, A.; Skurska, M.; Konovalenko, I.S.; Suchikova, Y.O. Chemical Evaluation of the Quality of Nanostructures Synthe-sized on the Surface of Indium Phosphide. Arch. Mater. Sci. Eng. 2021, 110, 18-26. https://doi.org/10.5604/01.3001.0015.3592
  28. Monaico, E.V.; Morari, V.; Ursaki, V.V.; Nielsch, K.; Tiginyanu, I.M. Core-Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties. Nanomaterials 2022, 12, 1506. https://doi.org/10.3390/nano12091506
  29. Vambol, S.O.; Bogdanov, I.T.; Vambol, V.V.; Suchikova, Ya.O.; Kovachov, S.S. Correlation between Technological Factors of Synthesis of por-GaP and its Acquired Properties. Nanosystemy, Nanomaterialy, Nanotehnologii 2018, 16, 657-670.
  30. Suchikova, Y.; Lazarenko, A.; Kovachov, S.; Usseinov, A.; Karipbaev, Z.; Popov, A. I. Formation of Porous Ga2O3/GaAs Layers for Electronic Devices. In 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET); Lviv-Slavske, 2022. https://doi.org/10.1109/TCSET55632.2022.9766890
  31. Dontsova, T.; Kutuzova, A.; Hosseini-Bandegharaei, A. Cha-racterization and Properties of Titanium (IV) Oxide, Synthesized by Different Routes. Chem. Chem. Technol. 2021, 15, 465-474. https://doi.org/10.23939/chcht15.04.465
  32. Deivasigamani, P.; Ponnusamy, S.K., Sundararaman, S.; Suresh, A. Superhigh Adsorption of Cadmium (II) Ions onto Surface Modified Nano Zerovalent Iron Composite (CNS-nZVI): Characterization, Adsorption Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457-464. https://doi.org/10.23939/chcht15.04.457
  33. Prudius, S.; Hes, N.; Trachevskiy, V.; Khyzhun, O.; Brei, V. Superacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study. Chem. Chem. Technol 2021, 15, 336-342. https://doi.org/10.23939/chcht15.03.336
  34. Beji, L.; Sfaxi, L.; Ismail, B.; Zghal, S.; Hassen, F.; Maaref, H. Morphology and Photoluminescence Studies of Electrochemically Etched Heavily Doped p-Type GaAs in HF Solution. Microelec-tronics J. 2003, 34, 969-974. https://doi.org/10.1016/S0026-2692(03)00183-6
  35. Langa, S.; Tiginyanu, I.M.; Carstensen, J.; Christophersen, M.; Föll, H. Formation of Porous Layers with Different Morphologies during Anodic Etching of n‐InP. Electrochem. solid-state lett. 2000, 3, 514-516.
  36. Spiecker, E.; Rudel, M.; Jäger, W.; Leisner, M.; Föll, H. Mor-phology, Interface Polarity and Branching of Electrochemically Etched Pores in InP. Phys. Status Solidi A 2005, 202, 2950-2962. https://doi.org/10.1002/pssa.200521098
  37. Guo, N.; Xue, H.; Bao, A.; Wang, Z.; Sun, J.; Song, T.; Ge, X.; Zhang, W.; Huang, K.; He, F. et al. Achieving Superior Electrocatalytic Performance by Surface Copper Vacancy Defects during Electrochemical Etching Process. Angew. Chem. 2020, 132, 13882-13888. https://doi.org/10.1002/ange.202002394
  38. Faktor, M.M.; Stevenson, J.L. The Detection of Structural Defects in GaAs by Electrochemical Etching. J. Electrochem. Soc. 1978, 125, 621. https://doi.org/10.1149/1.2131512
  39. Bohdanov, I.; Suchikova, Y.; Kovachov, S.; Peregudova, V.; Dauletbekova, A.K.; Popov, A.I. Investigation of Critical Points of Pore Formation Voltage on the Surface of Semiconductors of A3B5 Group. In 2021 IEEE 12th International Conference on Electronics and Information Technologies, ELIT 2021; Lviv, 2021; pp 190-193. https://doi.org/10.1109/ELIT53502.2021.9501107
  40. Naddaf, M. Formation of Superhydrophobic Porous GaAs Layer: Effect of Substrate Doping Type. Bull. Mater. Sci. 2022, 45, 89. https://doi.org/10.1007/s12034-021-02639-4
  41. Bioud, Y. A.; Boucherif, A.; Belarouci, A.; Paradis, E.; Drouin, D.; Arès, R. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs. Nanoscale Res. Lett. 2016, 11, 446. https://doi.org/10.1186/s11671-016-1642-z
  42. Vambol, S.; Bogdanov, I.; Vambol, V.; Lopatina, H.; Tsybu-liak, N. Research into Effect of Electrochemical Etching Conditions on the Morphology of Porous Gallium Arsenide. East.-Eur. J. Enterp. Technol. 2017, 6, 22-31. https://doi.org/10.15587/1729-4061.2017.118725
  43. Suchikova, Y.O.; Kovachov, S.S.; Lazarenko, A.S.; Bardus, I.O.; Tikhovod, K.; Hurenko, O.I.; Bohdanov, I.T. Oxidation of the n-GaAs Surface: Morphological and Kinetic Analysis. Journal of Nano- and Electronic Physics 2022, 14, 03033. https://doi.org/10.21272/jnep.14(3).03033
  44. Vambol, S.O.; Bohdanov, I.T.; Vambol, V.V.; Suchikova, Y.O.; Kondratenko, O.M.; Nestorenko, T.P.; Onyschenko, S.V. Formation of Filamentary Structures of Oxide on the Surface of Monocrystalline Gallium Arsenide. Journal of Nano- and Electronic Physics 2017, 9, 06016. https://doi.org/10.21272/jnep.9(6).06016
  45. Md Taib M.I.; Zainal, N.; Hassan, Z. Improvement of Porous GaAs (100) Structure through Electrochemical Etching Based on DMF Solution. J. Nanomater. 2014, 2014, 294385. https://doi.org/10.1155/2014/294385