[3+2] Cycloaddition of N-tert-Butyl, -(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation

2023;
: pp. 518 - 531
1
Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra
2
Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra
3
Applied Chemistry Laboratory, University of Biskra

In this scientific contribution, regio- and diastereo- selectivity of [3+2] cycloaddition (32CA) of N-tert-butyl,α-(4-trifluoromethyl)-phenylnitrone (1) with methacrolein (2) were investigated using DFT method at B3LYP/6-31(d) computational level in gas and dichloromethane solvent. The molecular electrostatic potential MESP was used to show the most active centers in the examined molecules. Global and local reactivity indices as well as thermodynamic parameters have been calculated to explain the regioselectivity and stereoselectivity for the selected reaction. The possible chemoselective ortho/meta regioselectivity and stereo- (endo/exo) isomeric channels were investigated. Our theoretical results give important elucidations for the possible pathways related to the studied 32CA reaction.

  1. Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley-Interscience: New York, 1984.
  2. Gothelf, K.V., Jorgensen, K.A.Asymmetric 1,3-Dipolar Cyc-loaddition Reactions. Chem. Rev. 1998, 98, 863-910. http://doi.org/10.1021/cr970324e
  3. Jasiński, R.A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-hexamethylcyclopentane.J. Mol. Graph. Model. 2020, 94, 107461. http://doi.org/10.1016/j.jmgm.2019.107461
  4. Jasiński, R.Competition between One-Step and Two-Step Me-chanism in Polar [3 + 2] Cycloadditions of (Z)-C-(3,4,5-Trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-Bromo-1-nitroethenes.Comput. Theor. Chem. 2018, 1125, 77-85. https://doi.org/10.1016/j.comptc.2018.01.009
  5. Jasiński, R.Nitroacetylene as Dipolarophile in [2 + 3] Cycloaddition Reactions with Allenyl-Type Three-Atom Components: DFT Computational Study. Monatsh. Chem. 2015, 146, 591-599. https://doi.org/10.1007/s00706-014-1389-0
  6. Jasiński, R.; Jasińska, E.; Dresler, E. A DFT Computational Study of the Molecular Mechanism of [3 + 2] Cycloaddition Reac-tions between Nitroethene and Benzonitrile N-Oxides. J. Mol. Model. 2017, 23, 13. https://doi.org/10.1007/s00894-016-3185-8
  7. Jasiński, R.Competition between the One-Step and Two-Step, Zwitterionic Mechanisms in the [2+3] Cycloaddition of Gem-Dinitroethene with (Z)-C,N-Diphenylnitrone: A DFT Computation-al Study.Tetrahedron2013, 69, 927-932.https://doi.org/10.1016/j.tet.2012.10.095
  8. Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products; Wiley and Sons: Hoboken, 2003.
  9. Merino, P. In Science of Synthesis, Vol. 27; Padwa, A., Ed.; George Thieme: New York, 2004.
  10. Jones, G.O.; Houk, K.N.Predictions of Substituent Effects in Thermal Azide 1,3-Dipolar Cycloadditions:  Implications for Dy-namic Combinatorial (Reversible) and Click (Irreversible) Chemi-stry. J. Org. Chem. 2008, 73, 1333-1342. https://doi.org/10.1021/jo702295d
  11. Parr, R.G.; Pearson R.G.Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
  12. Minter, A.R.;, Brennan, B.B.; Mapp, A.K. A Small Molecule Transcriptional Activation Domain. J. Am. Chem. Soc. 2004, 126, 10504-10505.https://doi.org/10.1021/ja0473889
  13. Chiacchio, U.; Rescifina, A.; Iannazzo, D.;Piperno, A.; Romeo, R.; Borrello, L.; Sciortino, M.T.; Balestrieri, E.; Macchi, B.; Mastino, A. et al.Phosphonated Carbocyclic 2‘-Oxa-3‘-azanucleosides as New Antiretroviral Agents. J. Med. Chem. 2007, 50, 3747-3750. https://doi.org/10.1021/jm070285r
  14. Ding, P.; Miller, M.; Chen, Y.;Helquist, P.; Oliver, A.J.; Wiest, O.Syntheses of Conformationally Constricted Molecules as Potential NAALADase/PSMA Inhibitors. Org. Lett. 2004, 6, 1805-1808.https://doi.org/10.1021/ol049473r
  15. Wess, G., Kramer, W., Schuber, G.;Enhsen, A.; Baringhaus, K.-H.; Glombik, H.; Müllner, S.; Bock, K.; Kleine, H.; John, M. et al. Synthesis of Bile Acid – Drug Conjugates: Potential Drug – Shuttles for Liver Specific Targeting. Tetrahedron. Lett. 1993, 34, 819-822. https://doi.org/10.1016/0040-4039(93)89021-H
  16. Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiac-chio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An Efficient Approach to Enantiomeric Isoxazolidinyl Analogues of Tiazofurin Based on Nitrone Cycloadditions.Tetrahedron Asymme-try2005, 16, 3865-3876. https://doi.org/10.1016/j.tetasy.2005.11.004
  17. Mannucci, V.; Cordero, F.M.; Piperno, A.;Romeo, G.; Brandi, A. Diastereoselective Synthesis of a Collection of New Homonuc-leoside Mimetics Containing Pyrrolo[1,2-b]isoxazoline and Pyrroli-dine Rings. Tetrahedron Asymmetry2008, 19, 1204-1209. https://doi.org/10.1016/j.tetasy.2008.04.028
  18. Romeo, R.; Giofre, S.V.; Macchi, B.;Balestrieri, E.; Mastino, A.; Merino, P.; Carnovale, C.; Romeo, G.; Chiacchio, U. Truncated Reverse Isoxazolidinyl Nucleosides: A New Class of Allosteric HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem. 2012, 7, 565-569. https://doi.org/10.1002/cmdc.201200022
  19. Kiguchi, T.; Shirakawa, M.; Honda, R.;Ninomiya, I.; Naito, T. Total Synthesis of (+)-Azimic Acid, (+)-Julifloridine, and Proposed Structure of N-Methyljulifloridine via Cycloaddition of Nitrone to a Chiral Dipolarophile. Tetrahedron1998, 54, 15589-15606. https://doi.org/10.1016/S0040-4020(98)01012-6
  20. Cardona, F.; Moreno, G.; Guarna, F.;Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. New Concise Total Synthesis of (+)-Lentiginosine and Some Structural Analogues. J. Org. Chem.2005, 70, 6552-6555. https://doi.org/10.1021/jo0509408
  21. Delso, I.; Tejero, T.; Goti, A.; Merino, P. Synthesis of d-Arabinose-Derived Polyhydroxylated Pyrrolidine, Indolizidine and Pyrrolizidine Alkaloids. Total Synthesis of Hyacinthacine A2. Tetrahedron2010, 66, 1220-1227. https://doi.org/10.1016/j.tet.2009.12.030
  22. Peng, J.; Jiang, D.; Lin, W.; Chen, Y. Palladium-Catalyzed Sequential One-Pot Reaction of Aryl Bromides with O-Homoallylhydroxylamines: Synthesis of N-Aryl-β-amino Alcohols. Org. Biomol. Chem. 2007, 5, 1391-1396. https://doi.org/10.1039/B701509G
  23. Andrade, M.; Barros, M.T.; Pinto, R.C. Clean and Sustainable Methodologies for the Synthesis of Isoxazolidines. In Heterocyclic-Targets in Advanced Organic Synthesis; Carreiras, M. C.; Marco-Contelles, J., Eds.; Research Signpost: Trivandrum, India, 2011; pp 51-67.
  24. Bădoiu, A.; Kündig, E.P.Electronic Effects in 1,3-Dipolar Cycloaddition Reactions of N-Alkyl and N-Benzyl Nitrones with Dipolarophiles. Org. Biomol. Chem. 2012,10, 114-121. https://doi.org/10.1039/C1OB06144E
  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B. Gaussian 09, Revision D.01, CT 2009.
  26. Jasiński, R.; Koifman, O.I.; Barański, A. A DFT Study on the Regioselectivity and Molecular Mechanism of Nitroethene [2 + 3] Cycloaddition to (Z)-C,N-Diphenylnitrone and C,C,N-Triphenylnitrone. Mendeleev Commun.2011, 21, 262-263. https://doi.org/10.1016/j.mencom.2011.09.010
  27. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes. Tetrahedron2015, 71, 2421-2427.https://doi.org/10.1016/j.tet.2015.02.070
  28. Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297-306. https://doi.org/10.1021/ct700248k
  29. Cances, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Back-ground and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032.https://doi.org/10.1063/1.474659
  30. Cossi, M.; Barone, V.; Cammi, R.;Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1
  31. Barone, V.; Cossi, M.; Tomasi, J. Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model. J. Comput. Chem. 1998, 19, 404-417.https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
  32. Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415-32428.https://doi.org/10.1039/C4RA04280H
  33. Mayer, I. Bond Orders and Valences from ab Initio Wave Functions. Int. J. Quantum. Chem. 1986, 29, 477-483. https://doi.org/10.1002/qua.560290320
  34. Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and AB Initio Calculations of S-Methyl-N,N-dimethylthiocarbamate. Spectrochimica Acta Part A: Molecular Spectroscopy. 1993, 49, 2007-2017, 2019-2026. https://doi.org/10.1016/S0584-8539(09)91012-1
  35. Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interac-tions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005
  36. Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
  37. Zhao, Y.; Truhlar, D.G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions:  The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. 2004, 108, 6908-6918.https://doi.org/10.1021/jp048147q
  38. Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161-4163. https://doi.org/10.1021/j100717a029
  39. Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924.https://doi.org/10.1021/ja983494x
  40. Parr, R.G.; Yang, W. In Density Functional Theory of Atoms and Molecules; Oxford University: New York, 1989.
  41. Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reac-tions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624.https://doi.org/10.1021/jo800572a
  42. Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008
  43. Domingo, L.R.; Aurell, M.J.; Pérez, P.;Contreras, R. Quantita-tive Characterization of the Local Electrophilicity of Organic Mole-cules. Understanding the Regioselectivity on Diels−Alder Reac-tions. J. Phys. Chem. 2002, 106, 6871-6875. https://doi.org/10.1021/jp020715j
  44. Pérez, P.; Domingo, L.R.; Duque-Norna, M.;Chamorro, E. A Condensed-to-Atom Nucleophilicity Index. An Application to the Director Effects on the Electrophilic Aromatic Substitutions.J. Mol. Struct. Theochem. 2009, 895, 86-91. https://doi.org/10.1016/j.theochem.2008.10.014
  45. Mloston, G.; Jasinski, R.; Kula, K.;Heimgartner, H. A DFT Study on the Barton–Kellogg Reaction – The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldia-zomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176-182.https://doi.org/10.1002/ejoc.201901443
  46. Sustmann, R.; Shubert, R. Photoelektronenspektroskopische bestimmung von substituenten-effekten II. α,β-ungesättigte Carbonester. Tetrahedron Lett.1972, 13, 4271-4274. https://doi.org/10.1016/S0040-4039(01)94292-3
  47. Šponer, J. Hobza, P. DNA Base Amino Groups and their Role in Molecular Interactions: Ab Initio and Preliminary Density Functional Theory Calculations. Int. J. Quantum. Chem. 1996, 57, 959-970.https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S
  48. Murray, J.S.; Sen, K. Molecular electrostatic potentials: concepts and 399 applications; Elsevier: Amsterdam, 1996.
  49. Marakchi, K.; Kabbaj, O. K.; Komiha, N. Etude DFT du méca-nisme des réactions de cycloaddition dipolaire-1,3 de la C,N-diphénylnitrone avec des dipolarophiles fluorés de type éthylénique et acétylénique. J. Fluor. Chem. 2002, 114, 81-89. https://doi.org/10.1016/S0022-1139(01)00570-X
  50. Marakchi, K.; Abou El Makarim, H.; Kabbaj, O. K.;Komiha, N. Etude Theorique du Mecanisme de la Reaction de Cycloaddition Dipolaire-1,3 du 3-Fluoro-3-Trifluoromethyl Prop-2-Enoate de Methyle Avec la Pyrroline-1-Oxyde. Phys. Chem. News. 2010,52, 128-136.
  51. Marakchi, K.; Ghailane, R.; Kabbaj, O.K.; Komiha, N. DFT Study of the Mechanism and Stereoselectivity of the 1,3-Dipolar Cycloaddition between Pyrroline-1-oxide and Methyl Crotonate. J. Chem. Sci. 2014, 126, 283-292. https://doi.org/10.1007/s12039-013-0563-y
  52. Domingo, L.R. Theoretical Study of the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. A DFT Study of Reaction between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile. J. Org. Chem. 1999, 64, 3922-3929. https://doi.org/10.1021/jo9822683