Ferrocenylmethylnucleobases Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization

2020;
: pp. 146 - 153
1
1 University of El Oued, VTRS Laboratory 2 University of Ouargla, Chemistry Department
2
University of Ouargla, Chemistry Department
3
University of El Oued, VTRS Laboratory

Three ferrocenylmethylnucleobases (FcMeNb) were synthesized and characterized by cyclic voltammetry, electronic absorption, FT-IR and NMR spectroscopy. The energy of frontier molecular orbitals was determined using DFT/B3LYP method combined with 6-311++G(d,p) basis set in acetonitrile. The lower standard rate constant values of the FcMeNb compounds as compared to ferrocene indicated slower electron transfer kinetics.

  1. Khand U., Lanez T., Pauson P.: J. Chem. Soc., Perkin Trans., 1989, 1, 2075. https://doi.org/10.1039/P19890002075
  2. Lanez T., Pauson P.: J. Chem. Soc., Perkin Trans., 1990, 1, 2437. https://doi.org/10.1039/P19900002437
  3. Larik A., Saeed A., Fattah T. et al.: Appl. Organomet. Chem., 2017, 31, 1. https://doi.org/10.1002/aoc.3664
  4. Santos M., Bastos P., Catela I. et al.: Mini-Rev. Med. Chem., 2017, 17, 771. https://doi.org/10.2174/1389557516666161031141620
  5. Chen S.: J. Organomet. Chem., 1980, 202, 183. https://doi.org/10.1016/S0022-328X(00)90515-1
  6. Price C., Aslanoglu M., Isaac J. et al.: J. Chem. Soc., Dalton Trans., 1996, 21, 4115. https://doi.org/10.1039/DT9960004115
  7. Houlton A.; Isaac C.; Gibson A. et al.: J. Chem. Soc., Dalton Trans., 1999, 18, 3229. https://doi.org/10.1039/A905168F
  8. Kowalski K., Szczupak Ł., Saloman S. et al.: ChemPlusChem., 2016, 82, 303. https://doi.org/10.1002/cplu.201600462
  9. Kowalski K.: Coordin. Chem. Rev., 2016, 317, 132. https://doi.org/10.1016/j.ccr.2016.02.008
  10. Hocek M.: Eur. J. Org. Chem., 2003, 2, 245. https://doi.org/10.1002/ejoc.200390025
  11. Gundersen L., Nissen-Meyer J., Spilsberg D.: J. Med. Chem., 2002, 45, 1383. https://doi.org/10.1021/jm0110284
  12. Cocuzza A., Chidester D., Culp S. et al.: Bioorg. Med. Chem. Lett., 1999, 9, 1063. https://doi.org/10.1016/S0960-894X(99)00133-X
  13. Chiosis G., Lucas B., Shtil A. et al.: Bioorg. Med. Chem., 2002, 10, 3555. https://doi.org/10.1016/S0968-0896(02)00253-5
  14. De Clercq E., Holy A., Rosenberg I. et al.: Nature, 1986, 323, 464. https://doi.org/10.1038/323464a0
  15. Wagstaff A., Faulds D., Goa K.: Drugs, 1994, 47, 153. https://doi.org/10.2165/00003495-199447010-00009
  16. Zhao L., Zhang L., Liu J. et al.: Eur. J. Med. Chem., 2012, 47, 255. https://doi.org/10.1016/j.ejmech.2011.10.050
  17. Cho Y., Lee J., Song S.: Bioconjug. Chem., 2005, 16, 1529. https://doi.org/10.1021/bc049697u
  18. Meunier P., Quattara B., Gautheron J. et al.: Eur. J. Med. Chem., 1991, 26, 351. https://doi.org/10.1016/0223-5234(91)90070-4
  19. Lanez E., Bechki L., Lanez T.: Chem. Chem. Technol., 2019, 13, 11. https://doi.org/10.23939/chcht13.01.011
  20. Neuse E.: J. Inorg. Organomet. Polym. Mater., 2005, 15, 3. https://doi.org/ 10.1007/s10904-004-2371-9
  21. Simenela A., Morozova E., Snegura L. et al.: Appl. Organomet. Chem., 2008, 23, 219. https://doi.org/10.1002/aoc.1500
  22. Sun R., Wang L., Yu H. et al.: Organometallics, 2014, 33, 4560. https://doi.org/10.1021/om5000453
  23. Osgerby J., Pauson P.: J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656
  24. Brett C., Brett A.: Electrochemistry: Principles, Methods and Applications. Oxford Science University Publ., Oxford 1993.
  25. Nicholson R., Shain I.: Anal. Chem., 1964, 36, 706. https://doi.org/10.1021/ac60210a007
  26. Nicholson R., Shain I.: Anal. Chem., 1965, 37, 1351. https://doi.org/10.1021/ac60230a016
  27. Frisch M., Trucks G., Schlegel H. et al.: Gaussian 09. Gaussian Inc., Wallingford CT, 2009.
  28. Pearson R.: J. Am. Chem. Soc., 1963, 85, 3533. https://doi.org/10.1021/ja00905a001