Assessing the Effects of Substitution and Substituent Position on the Reactivity of Salicylideneaniline Ligands to Coordinate Transition Metal(II) Ions: a DFT Study

2021;
: pp. 343–351
1
Laboratory of Molecular Chemistry and Environment, University of Biskra
2
Laboratory of Molecular Chemistry and Environment, University of Biskra
3
Applied Chemistry Laboratory, University of Biskra

The present scientific contribution aims to investigate computationally the effects of substitution and substituent position on the reactivity of a series of salicylideneaniline derivatives ligands containing 13 molecules. Global reactivity parameters such as the EHOMO, ELUMO, gap energy, electronegativity, chemical hardness, chemical softness, electrophilicity index, and molecular electrostatic potential analysis (MESP) have been calculated at DFT/B3LYP/TZP level of theory and then well discussed to give valuable explanations for the effects of substitution and substituent position on the reactivity of the studied ligands.

  1. Sorokin A.: Chem. Rev., 2013, 113, 8152. https://doi.org/10.1021/cr4000072
  2. Priya J., Sharma S.: J. Mater. Sci. Mater. Electron., 2018, 29, 180. https://doi.org/10.1007/s10854-017-7902-6
  3. Cozzi P.: Chem. Soc. Rev., 2004, 33, 410. https://doi.org/10.1039/B307853C
  4. Cimerman Z., Miljanic S., Galic N.: Croat. Chem. Acta, 2000, 73, 81.
  5. Hachani S., Necira Z., Mazouzi D., Nebbache N.: Acta Chim. Slov., 2018, 65, 183. https://doi.org/10.17344/acsi.2017.3803
  6. Mukherjee T., Pessoa J., Kumar A., Sarkar A.: Dalton Trans., 2013, 42, 2594. https://doi.org/10.1039/C2DT31575K
  7. Ershad S., Sagathforoush L., Karim-nezhad G., Kangari S.: Int. J. Electrochem. Sci., 2009, 4, 846.
  8. Cramer C., Truhlar D.: Phys. Chem. Chem. Phys., 2009, 11, 10757. https://doi.org/10.1039/b907148b
  9. Soliman S.:Comput. Theor.Chem., 2012, 994, 105. https://doi.org/10.1016/j.comptc.2012.06.020
  10. Osman A., Aly A., Abd El-Mottaleb, Gouda G.: Bull. Korean Chem. Soc., 2004, 25, 45. https://doi.org/10.5012/bkcs.2004.25.1.045
  11. Hamprecht F., Cohen A., Tozer D., Handy N.: J. Chem. Phys., 1998, 109, 6264. https://doi.org/10.1063/1.477267
  12. Akbari A., Sheikhshoaie I., Ebrahimipour S.: Arab. J. Chem., 2016, 9, 259. https://doi.org/10.1016/j.arabjc.2011.03.015
  13. Koopmans T.: Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2
  14. Pearson R.: Inorg. Chem., 1988, 27, 734. https://doi.org/10.1021/ic00277a030
  15. Erdogan S., Safi Z., Kaya S. et al.: J. Mol. Struct., 2017, 1134, 751. https://doi.org/10.1016/j.molstruc.2017.01.037
  16. Griffith J.: Recueil des Travaux Chimiques des Pays-Bas, 1956, 75, 676. https://doi.org/10.1002/recl.19560750613
  17. Ramya K., Anupama K., Shainy K.: Egypt. J. Petrol., 2017, 26, 421. https://doi.org/10.1016/j.ejpe.2016.06.001
  18. amsayah M., Khoutoul M., Takfaoui A. et al.: J. Mater. Environ. Sci., 2016, 7, 2796.
  19. Dulal C., Nazmul I.: Int. J. Quantum Chem., 2011, 111, 40. https://doi.org/10.1002/qua.22415
  20. Kaya S., Kariper S., Ungördü A., Kaya C.: Journal of New Results in Science, 2014, 4, 82.
  21. Parr R., Szentpaly L., Liu S.: J. Am. Chem. Soc., 1999, 121, 1922. https://doi.org/10.1021/ja983494x
  22. Scrocco E., Tomasi J.: Top. Curr.Chem., 1973, 42, 95.
  23. Politzer P., Murray J., Lane P.: J. Comput. Chem., 2003, 24, 505. https://doi.org/10.1002/jcc.10209
  24. Ma Y., Politzer P.: J. Chem. Phys., 2004, 120, 8955. https://doi.org/10.1063/1.1698545