Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements

2023;
: pp. 574 - 591
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

To synthesize resins with oxygen-containing functional groups the C9 fractions of hydrocarbon pyrolysis, heavy gasoline, and light coal tar fraction obtained from coal coking liquid products (CCLP) were used. Various types of initiators and industrial monomers were obtained using the above-mentioned non-target and/or by-products of organic raw materials processing: by the initiated oligomerization method (from C9 fractions) – petroleum polymer resins with functional groups; by radical cooligomerization (from CCLP) (with RPKV) – coumarone-indene resins with functional groups. The influence of the main factors controlling the synthesis process of resins with functional groups on their quantitative and qualitative characteristics was studied, including the process temperature, duration, and the reaction mixture composition. The structure of the synthesized resins was analyzed by IR spectroscopy, and the presence of epoxy, carboxyl, hydroxyl, and methacrylate functional groups was confirmed.

  1. Chang, T.; Huang, Y.; Yang, W. Waste to Treasure: Prepara-tion of Functional Polymeric Particles from Waste Olefins in Car-bolic Oil by Self-Stabilized Precipitation Polymerization. ACS Appl. Polym. Mater. 2023, 5, 2807-2815. https://doi.org/10.1021/acsapm.3c00050
  2. Kumar, S.; Krishnan, S.; Mohanty, S.; Kumar Nayak, S. Synthesis and Characterization of Petroleum and Biobased Epoxy Resins: A Review. Polym. Int. 2018, 67, 815-839. https://doi.org/10.1002/pi.5575
  3. Hassanpour, M. A Review of Four Kinds of Resin Production Technologies Based On Recent Developments. Int. J. Ind. Eng. 2021, 8, 1-12. http://www.internationaljournalssrg.org/IJIE/paper-details?Id=81
  4. Bratychak, М.М.; Grynyshyn, О.B. Tekhnolohiia nafty i hazu; Publishing House of Lviv Polytechnic: Lviv, 2013.
  5. Bratychak, М.М. Osnovy promyslovoi naftokhimii; Publishing House of Lviv Polytechnic: Lviv, 2008.
  6. Hetmanchuk, Yu.P.; Bratychak, М.М. Khimiia ta tekhnolohiia polimeriv; Beskyd Bit: Lviv, 2006.
  7. Bratychak, М.М.; Pyshyev, S.V.; Rudkevych, M.I. Khimiia ta tekhnolohiia pererobky vuhillia; Beskyd Bit: Lviv, 2006.
  8. Pyshyev, S.; Prysiazhnyi, Yu.; Sidun, Iu.; Shved, M.; Bor-beyiyong, G.I.; Korsh, D. Obtaining of Resins Based on Model Mixtures with Indene, Coumarone and Styrene and their Usage as Bitumen Modifiers. Petroleum & Coal 2020, 62, 341-346.
  9. Topilnytskyy, P.; Romanchuk, V.; Boichenko, S.; Golych, Y. Physico-Chemical Properties and Efficiency of Demulsifiers Based on Block Copolymers of Ethylene and Propylene Oxides. Chem. Chem. Technol. 2014, 8, 211–218. https://doi.org/10.23939/chcht08.02.211
  10. NIIR Board of Consultants & Engineers. Modern Technology of Synthetic Resins & Their Applications; Asia Pacific Business Press Inc., 2018.
  11. Bratychak, M.M.; Hunka, V.M. Khimia nafty i hasu; Publish-ing House of Lviv Polytechnic: Lviv, 2020.
  12. http://online.budstandart.com/ua/catalog/doc-page?id_doc=53602 (accessed 2006-10-01).
  13. Bratyczak, M.; Brozozowski, Z. Cwiczenia laboratoryjne z Chemii i technologii polimerow. Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, 1997.
  14. http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=27130 (accessed 1997-07-01).
  15. ISO 2554:1997 https://www.iso.org/standard/27071.html (accessed 1997-03-06).
  16. http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=27125 (accessed 2001-07-01).
  17.  http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=78301 (accessed 2019-06-01).
  18. Bratychak, M.M.; Grynyshyn, О.B.; Prysiazhnyi, Y.V.; Pushak, A.P. Naftopolimerni smoly z funktsiinymy hrupamy. Syntez, vlastyvosti, zastosuvannia; Publishing House of Lviv Polytechnic: Lviv, 2016.
  19. Bratichak, M.M.; Gagin, M.B.; Bratichak, M.M.; Grinishin, O.B. Epoxy-Containing Peroxide Initiated Copolymerization of Hydrocarbon Pyrolysis C9 Fraction. Ukrainskii Khimicheskii Zhur-nal 2003, 69, 60-63.
  20. Bratychak, M.; Brostow, W.; Grynyshyn, O.; Shyshchak, O. Synthesis and Characterization of Petroleum Resins with Epoxy Groups. Mater. Res. Innov. 2003, 7, 167-171. https://doi.org/10.1007/s10019-003-0243-5
  21. Grynyshyn, O.B.; Almauri, S.; Bratychak, M.M. Olihomery z hidroksylnymy hrupamy na osnovi ridkykh produktiv pirolizu vuhlevodniv. Visnyk DU”LP” Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia 1997, 333, 157-160.
  22. Grynyshyn, O.B.; Bratychak, M.M.; Almauri, S. Naftopoli-merni smoly z hidroksylnymy hrupamy na osnovi ridkykh produktiv pirolizu dyzelnoho palyva. Naftova i gazova promyslovist 1999, 3, 59-60.
  23. Grynyshyn, O.; Skibitskiy, V.; Bratychak, M.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 4. Resins with Carboxy Groups. Ecol. Chem. Eng. S 2004, 11, 41-51.
  24. Bratychak, M.; Astakhova, O.; Shyshchak, O.; Namiesnik, J.; Ripak, O.; Pyshyev, S. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 1. Coumarone-Indene Resins with Carboxy Groups. Chem. Chem. Technol. 2017, 11, 509-516. https://doi.org/10.23939/chcht11.04.509
  25. Astakhova, O.; Shved, M.; Zubal, O.; Shyshchak, O.; Pry-siazhnyi, Y.; Bruździak, P.; Bratychak, M. Obtaining of Couma-rone-Indene Resins Based on Light Fraction of Coal Tar. 4. Bitu-men-Polymer Blends with Participation of Coumarone-Indene Resins with Epoxy Groups. Chem. Chem. Technol. 2019, 13, 112-120. https://doi.org/10.23939/chcht13.01.112
  26. Bratychak, M.; Astakhova, O.; Prysiazhnyi, Y.; Shved, M.; Shyshchak, O.; Namiesnik, J.; Plonska-Brzezinska, M. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 3. Coumarone-Indene Resins with Methacrylic Fragments. Chem. Chem. Technol. 2018, 12, 379-385. https://doi.org/10.23939/chcht12.03.379