Synthesis, Antimicrobial and Computational Studies of New Branched Azaphenothiazinones Derivatives

2023;
: pp. 786 - 795
1
Natural Science Unit, School of General Studies, University of Nigeria
2
Department of Pure and Industrial Chemistry, University of Nigeria
3
Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
4
Natural Science Unit, School of General Studies, University of Nigeria; Department of Pure and Industrial Chemistry, University of Nigeria; Nigeria 4 Department of Chemistry, North Carolina State Universit
5
Department of Chemistry, Gregory University
6
Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria

In a continued search for new medicinally active nonlinear phenothiazines, novel angular chloroazaphenothiazinone derivatives have been synthesized via transition metal-catalyzed cross-coupling reactions. The structural elucidation of the synthesized compounds was established by a combined spectroscopic and elemental analysis. The synthesized compounds were tested for their antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Enterococusfaecalis, Escherichia coli, Candida albican,and Aspergillus niger isolates by the convectional agar-well dilution method and compounds 5c and 8cdisclosed excellent in vitro activity against some of the tested microorganisms. In silico,the study showed that the synthesized compounds possessed promising physichemical properties and fit well in the active site of a Biotin-Protein Ligase (BPL) forming essential hydrogen bonding and hydrophobic interactions.

  1. Onoabedje, E.A.;Egu, S.A.; Ezeokonkwo M.A.; Okoro, U.C. Highlights of Molecular Structures and Applications of Phenothiazine & Phenoxazine Polycycles.J MolStruct.2019,1175, 956–962.https://doi.org/10.1016/j.molstruc.2018.08.064
  2. Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of phenothiazine hybrids with Potential Medicinal Interest: A Review. Molecules2022, 27, 276. https://doi.org/10.3390/molecules27010276
  3. Pluta, K.;Jeleń, M.;Morak-Młodawska, B.; Zimecki, M.; Artym, J.;Kocięba, M.;Zaczyńska, E. Azaphenothiazines – Promising Phenothiazine Derivatives. An Insight into Nomenclature, Synthesis, Structure Elucidation and Biological Properties. Eur J Med Chem. 2017, 138, 774–806. https://doi.org/10.1016/j.ejmech.2017.07.009
  4. Montoya, M.C.; DiDone, L.; Heier, R.F.; Meyers, M.J.; Krysan, D.J. Antifungal Phenothiazines: Optimization, Characterization of Mechanism, and Modulation of Neuroreceptor Activity. ACS Infect. Dis.2018,4, 499–507. https://doi.org/10.1021/acsinfecdis.7b00157
  5. Wen, B.; Zhou, M. Metabolic Activation of the Phenothiazine Antipsychotic Chlorpromazine and Thioridazineto ElectropholicIminoquinone Species in Human Liver Microsomesand Recombinant P450s. Chem. Biol. Interact.2009,181, 220–226.https://doi.org/10.1016/j.cbi.2009.05.014
  6. Sadanandam, Y.S.; Shetty, M.M.; Rao, A.B.; Rambabu, Y. 10H-Pehnothiazines: A New Class of Enzyme Inhibitors for Inflammatory Diseases. Eur. J. Med. Chem.2009, 44, 197–202.https://doi.org/10.1016/j.ejmech.2008.02.028
  7. Gopi, C.; Dhanaraju, M.D. Recent Progress in Synthesis, Structure and Biological Activities of Phenothiazine Derivatives. Rev. J. Chem.2019, 9,95–126. https://doi.org/10.1134/S2079978019020018
  8. Trivedi, A.R.; Siddiqui, A.B.; Shah, V.H. Design, Synthesis, Characterization and Antitubercular Activity of some 2-Heterocycle Substituted Phenothiazines.Arkivoc2008,2, 210–217.https://doi.org/10.3998/ark.5550190.0009.223
  9. Siddiqui, N.; Alam, S.M.; Ahsan, W. Synthesis, Anticonvulsant and Toxicity Evaluation of 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine. Acta Pharm. 2008, 58, 445–54. https://doi.org/10.2478/v10007-008-0025-0
  10. Kumar, A.; Gurtu, S.; Agarwal, J.C.; Sinha, J.N.; Bhargava K.P.; Shanker, K. Synthesis and Cardiovascular Activity of Substituted 4-Azetidinones. J. Indian Chem. Soc.1983, 60, 608–610. https://doi.org/10.5281/zenodo.6348916
  11. Venkatesan, K.; Satyanarayana, V.S.V.; Sivakumar, A. Synthesis and Biological Evaluation of Novel Phenothiazine Derivatives as Potential Antitumor Agents. PolycyclAromatCompd2023, 43, 850–859. https://doi.org/10.1080/10406638.2021.2021254
  12. Onoabedje, E.A.;Okafor, S.N.; Akpomie, K.G.; Okoro, U.C. The Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles. Chem. Chem. Technol.2019, 13, 288–295. https://doi.org/10.23939/chcht13.03.288
  13. González-González, A.; Vazquez-Jimenez, L.K.; Paz-González, A.D.; Bolognesi, M.L.; Rivera G. Recent Advances in the Medicinal Chemistry of Phenothiazines, New Anticancer and Antiprotozoal Agents. Curr Med Chem.2021, 28, 7910–7936. https://doi.org/10.2174/0929867328666210405120330
  14. Pluta, K.; Jeleń, M.; Morak-Młodawska, B.; Zimecki, M.; Artym, J.; Kocięba, M.; Anticancer Activity of Newly Synthesized Azaphenothiazinesfrom NCI's Anticancer Screening Bank. Pharmacol. Rep. 2010, 62, 319–332.https://doi.org/10.1016/s1734-1140(10)70272-3
  15. Aarestrup, F.M. Occurrence of Glycopeptide Resistance among Enterococcus faecium Isolates from Conventional and Ecological Poultry Farms. Microb. Drug Resist.2009,1, 255–257.https://doi.org/10.1089/mdr.1995.1.255
  16. Threlfall, E.J.; Ward, L.R.; Skinner, J.A.; Rowe, B. Increase in Multiple Antibiotic Resistance in Nontyphoidal Salmonellas from Humans in England and Wales: A Comparison of Data for 1994 and 1996. Microb.Drug Resist.2009,3, 263–266.https://doi.org/10.1089/mdr.1997.3.263
  17. Onoabedje, E.A.; Okoro, U.C.; Knight, D.W. Rapid Access to New Angular Phenothiazine and Phenoxazine Dyes. J. HeterocyclicChem.2017, 54, 206–214.https://doi.org/10.1002/jhet.2569
  18. Onoabedje, E.A.;Okoro, U.C.; Sarkar, A.; Knight, D.W. Synthesis and Structure of New Alkynyl Derivatives of Phenothiazine and Phenoxazine. J. Sulfur Chem. 2016, 34, 269–281. http://dx.doi.org/10.1080/17415993.2015.1131827
  19. Onoabedje, E.A.; Okoro, U.C.; Sarkar, A.; Knight, D.W. Fuctionalization of Linear and Angular Phenothiazine and Phenoxazine Ring Systems viaPd(0)/XPhos Mediated Suzuki-Miyaura Cross-coupling Reactions. J Heterocyclic Chem. 2016,53, 1787–1794. https://doi.org/10.1002/jhet.2485
  20. Ibeanu, F.N.; Onoabedje, E.A.; Ibezim, A.; Okoro,U.C. Synthesis, Characterization, Computational and Biological Study of Novel Azabenzo[a]phenothiazine and Azabenzo[b]phenoxazineHeterocycles as Potential Antibiotic Agent. Med Chem Res. 2018,27, 1093–1102.https://doi.org/10.1007/s0044-017-2131-3
  21. Yu, X-Q.; Yamamoto, Y.; Miyaura, N. Aryl Triolborates: Novel Reagent for copper catalyzed N-Arylation of Amines, Amines, Anilines and Imidazoles.Chem. Asian J.2008, 3, 1517–1522. https://doi.org/10.1002/asia.200800135
  22. Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Cyclic Triolborates: Air and Water-Stable Ate Complexes of Organoboronic Acids. Angew. Chem. 2008, 120, 942–945. https://doi.org/10.1002/ange.200704162
  23. Yamamoto, Y. Cyclic Triolborate Salts: Novel Reagent for Organic Synthesis. Heterocycles2012,85, 799–819.https://doi.org/10.3987/REV-12-728
  24. Reller, L.B.; Weinstein,M.; Jorgensen,J.H.;Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis.2009, 49, 1749–1755. https://doi.org/https://doi.org/10.1086/647952
  25. Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Truck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966,45, 493–496.https://doi.org/10.1093/ajcp/45.4_ts.493
  26. Trott, O.; Olson, A.J. AutoDockVina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comp Chem. 2010, 31, 455–461.https://doi.org/10.1002/jcc.21334
  27. Lipinski C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability.J PharmacolToxicol Methods2000, 44, 235–249.https://doi.org/10.1016/S1056-8719(00)00107-6
  28. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates.J Med Chem2002,45, 2615–2623.https://doi.org/10.1021/jm020017n
  29. Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for Bad Bugs: Confronting the Challenges of Antibacterial Discovery. Nat. Rev. Drug Discov.2007,6, 29–40.https://doi.org/10.1038/nrd2201
  30. Forsyth, R.A.; Haselbeck, R.J.; Ohlsen, K.L.; Yamamoto, R.T.; Xu, H.; Trawick, J.D.; Wall, D.; Wang, L.; Brown-Driver, V.; Froelich, J.M. et al. A Genome-Wide Strategy for the Identification of Essential Genes in Staphylococcusaureus. Mol. Microbiol.2002, 43, 1387–1400.https://doi.org/10.1046/j.1365-2958.2002.02832.x
  31. Barker, D.F.; Campbell, A.M. Genetic and Biochemical Characterization of the birAGene and its Product: Evidence for a Direct Role of Biotin Holoenzyme Synthetasein Repression of the Biotin Operon in Escherichia coli. J. Mol. Biol. 1981,146, 469–492.https://doi.org/10.1016/0022-2836(81)90043-7