Synthesis, Characterization and Antibacterial Activity of Sn(II) and Sn(IV) Ions Complexes Containing N-Alkyl-N-Phenyl Dithiocarbamate Ligands

2023;
: pp. 729 - 739
1
Chemistry Department, College of Science, Kerbala University
2
Department of Chemistry, College of Science, University of Kerbala
3
Chemistry Department, College of Education for Pure Sciences, Kerbala University

In the current study, ligands S2 donor atoms, sodium N-methyl-N-phenyldithiocarbamate [L1], and sodium N-ethyl-N-phenyldithiocarbamate [L2] are prepared from carbon disulfide with N-methyl aniline and N-ethyl aniline, respectively. Sn(II) and Sn(IV) ions complexes containing N-alkyl-N-Phenyl dithiocarbamateare prepared and characterized by CHNS elemental analysis, infrared spectroscopy (FT-IR), 1HNMR-spectroscopy, mass spectroscopy, UV-visible spectroscopy, magnetic susceptibility and conductivity measurements. The analytical and spectral data show that the stoichiometry for all complexes is 1 : 2 metal to ligand. The spectral data confirm good coordination of dithiocarbamate ligand with the metal through sulfur atoms of dithiocarbamate moiety. Molar conductivity of complexes are measured using DMF as a solvent and indicated that the complexes of Sn(II) are non-ionic whereas Sn(IV) complexes are ionic. The ligands L1 and L2 and their complexes are examined against Staphylococcus aureus bacteria and Escherichia coli bacteria.

  1. Kumar, D.N. Molecular Structure Study of Thio Schiff Base Complexes of Organotin (IV): Synthesis, Spectroscopic and Thermal Methods. J. Mol. Struct. 2021, 1227, 129569. https://doi.org/10.1016/j.molstruc.2020.129569
  2. Stasevych, M.; Zvarych, V.; Khomyak, S.; Lunin, V.; Kopak, N.; Novikov, V.; Vovk, M. Proton-Initiated Conversion of Dithiocarbamates of 9,10-Anthracenedione. Chem. Chem. Technol. 2018, 12, 300–304. https://doi.org/10.23939/chcht12.03.300
  3. Lee, S.M.; Heard, P.J.; Tiekink, E.R.T. Molecular and Supramolecular Chemistry of Mono- and Di-Selenium Analogues of Metal Dithiocarbamates. Coord. Chem. Rev. 2018, 375, 410–423. https://doi.org/10.1016/j.ccr.2018.03.001
  4. Khan, N.; Farina, Y.; Mun, L.K.; Rajab, N.F.; Awang, N. Syntheses, Characterization, X-ray Diffraction Studies and in vitro Antitumor Activities of Diorganotin(IV) Derivatives of Bis(p-Substituted-N-Methylbenzylaminedithiocarbamates). Polyhedron2015, 85, 754–760. http://dx.doi.org/10.1016/j.poly.2014.08.063
  5. Landini, P.; Antoniani, D.; Burgess, J.G.; Nijland, R. Molecular Mechanisms of Compounds Affecting Bacterial Biofilm Formation and Dispersal. Appl. Microbiol. Biotechnol. 2010, 86, 813–823. https://doi.org/10.1007/s00253-010-2468-8
  6. Sedlacek, J.; Martins, L.M.; Danek, P.; Pombeiro, A.J.L.; Cvek, B. Diethyldithiocarbamate Complexes with Metals Used as Food Supplements Show Different Effects in Cancer Cells. J. Appl. Biomed. 2014, 12, 301–308. http://dx.doi.org/10.1016/j.jab.2014.04.002
  7. Menezes, D.C.; De Lima, G.M.; Porto, A.O.; Donnici, C.L.; Ardisson, J.D.; Doriguetto, A.C.; Ellena, J. Synthesis, Characterisation and Thermal Decomposition of Tin(IV) Dithiocarbamate Derivatives - Single Source Precursors for Tin Sulfide Powders. Polyhedron2004, 23, 2103–2109. https://doi.org/10.1016/j.poly.2004.06.007
  8. Ronconi, L.; Sadler, P.J. Applications of Heteronuclear NMR Spectroscopy in Biological and Medicinal Inorganic Chemistry. Coord. Chem. Rev. 2008, 252, 2239–2277. https://doi.org/10.1016/j.ccr.2008.01.016
  9. Gasser, G.; Metzler-Nolte, N. The Potential of Organometallic Complexes in Medicinal Chemistry‏. Curr. Opin. Chem. Biol.2012, 16, 84–91. https://doi.org/10.1016/j.cbpa.2012.01.013
  10. Pellerito, C.; Nagy, L.; Pellerito, L.; Szorcsik, A. Biological Activity Studies on Organotin(IV)n+ Complexes and Parent Compounds‏. J. Organomet. Chem. 2006, 691, 1733–1747. https://doi.org/10.1016/j.jorganchem.2005.12.025
  11. Alama, A.; Tasso, B.; Novelli, F. Organometallic Compounds in Oncology: Implications of Novel Organotins as Antitumor Agents‏. Drug Discov. Today2009,14, ‏500–508. https://doi.org/10.1016/j.drudis.2009.02.002
  12. Onwudiwe, D.C.; Nthwane, Y.B.; Ekennia, A.C.; Hosten, E. Synthesis, Characterization and Antimicrobial Properties of Some Mixed Ligand Complexes of Zn(II) Dithiocarbamate with Different N-donor Ligands. Inorganica Chim. Acta2016,447, 134–141.https://doi.org/10.1016/j.ica.2016.03.033
  13. Javed, F.; Sirajuddin, M.; Ali, S.; Khalid, N.; Tahir, M.N.; Shah, N.A.;Rasheed, Z.;Khan, M.R. Organotin(IV) Derivatives of o-Isobutyl Carbonodithioate: Synthesis, Spectroscopic Characterization, X-ray Structure, HOMO/LUMO and in vitro Biological Activities‏. Polyhedron2016,104, 80–90. https://doi.org/10.1016/j.poly.2015.11.041
  14. Tian, L.; Liu, X.; Zheng, X.; Sun, Y. Synthesis, Characterization and Cytotoxic Activity of New Diorganotin(IV) Complexes of N‐(3,5‐dibromosalicylidene)Tryptophane‏. Appl. Organomet. Chem. 2011, 25, 298-304.https://doi.org/10.1002/aoc.1758
  15. Mostafa, A.M.; Mwafy, E.A.; Hasanin, M.S. One-Pot Synthesis of Nanostructured CdS, CuS, and SnS by Pulsed Laser Ablation in Liquid Environment and Their Antimicrobial Activity. Opt. Laser Technol. 2020, 121, 105824. https://doi.org/10.1016/j.optlastec.2019.105824
  16. Ramasamy, K.; Kuznetsov, V.L.; Gopal, K.; Malik, M.A.; Raftery, J.; Edwards, P.P.; O’Brien, P. Organotin Dithiocarbamates: Single-Source Precursors for Tin Sulfide Thin Films by Aerosol-Assisted Chemical Vapor Deposition (AACVD)‏. Chem. Mater. 2013, 25, 266–276. https://doi.org/10.1021/cm301660n
  17. Onwudiwe, D.C.; Ajibade, P.A. Synthesis and Crystal Structure of Bis(N-Alkyl-N-Phenyl Dithiocarbamato)Mercury(II). J. Chem. Crystallogr. 2011, 41, 980–985.https://doi.org/10.1007/s10870-011-0029-3
  18. de Faria Franca, E.; Oliveira, M.R.L.; Guilardi, S.; de Andrade, R.P.; Lindemann, R.H.; Amim, J.; Ellena, J.; De Bellis, V.M.; Rubinger, M.M.M. Preparation, Crystal Structure and Spectroscopic Characterization of Nickel(II) Complexes with Dithiocarbimate Derivated of Sulfonamides. Polyhedron2006, 25, 2119–2126. https://doi.org/10.1016/j.poly.2005.11.035
  19. Manoussakis, G.E.; Tsipis, C.A.; Christophides, A.G. Tris(Dialkyldiselenocarbamates) of Arsenic, Antimony, and Bismuth. Inorg. Chem. 1973, 12, 3015–3017. https://doi.org/10.1021/ic50130a059
  20. Chen, D.; Lai, C.S.; Tiekink, E.R.T. Crystallographic Report: Tris(N,N-Dimethyldithiocarbamato)Arsenic(III) Dichloromethane Solvate. Appl. Organomet. Chem. 2003, 17, 813-814. https://doi.org/10.1002/aoc.515https://doi.org/10.1002/aoc.515
  21. Ritsema, R. Speciation of Organotin and Organoarsenic in Water Samples. Mikrochim. Acta1992, 109, 61–65. https://doi.org/10.1007/BF01243211
  22. Adeyemi, J.O.; Onwudiwe, D.C.; Hosten, E.C. Organotin(IV) Complexes Derived from N-Ethyl-N-Phenyldithiocarbamate: Synthesis, Characterization and Thermal Studies. J. Saudi Chem. Soc.2018, 22, 427–438.https://doi.org/10.1016/j.jscs.2017.08.004
  23. Mahato, M.; Mukherji, S.; Van Hecke, K.; Harms, K.; Ghosh, A.; Nayek, H.P. Mononuclear Homoleptic Organotin(IV) Dithiocarbamates: Syntheses, Structures and Antimicrobial Activities. J. Organomet. Chem. 2017, 853, 27–34.https://doi.org/10.1016/j.jorganchem.2017.10.027
  24. Adeyemi, J.O.; Onwudiwe, D.C.; Singh, M. Synthesis, Characterization, and Cytotoxicity Study of Organotin(IV) Complexes Involving Different Dithiocarbamate Groups. J. Mol. Struct. 2019, 1179, 366–375.https://doi.org/10.1016/j.molstruc.2018.11.022
  25. Mihsen, H.H.; Shareef, N.K.; Alwazni, W.S. Synthesis, Characterization and Antibacterial Studies of Silver Complex of 3-Aminopropyltriethoxysilane. Asian J. Chem. 2018, 30, 1465. https://doi:10.14233/ajchem.2018.21177
  26. Mihsen, H.H.; Shareef, N.K. Synthesis, Characterization of Mixed-Ligand Complexes Containing 2,2-Bipyridine and 3-Aminopropyltriethoxysilane. J Phys Conf Ser2018, 1032,012066.https://doi:10.1088/1742-6596/1032/1/012066
  27. Hassan, Z.M.; Alattar, R.A.; Abass, S.K.; Mihsen, H.H.; Abbas, Z. F.;Hussain, K.A. Synthesis, Characterization and Biological Activity of Mixed Ligand (Imine of Benzidine and 1,10-Phenanthroline) Complexes with Fe(II), Co(II), Ni(II) and Cu(II) Ions. Chem. Chem. Technol. 2022, 16, 15–24. https://doi.org/10.23939/chcht16.01.015
  28. Hartwell, S.K.; Grudpan, K.; Christian, G.D. Bead Injection with a Simple Flow-Injection System: An Economical Alternative for Trace Analysis. Trends Anal. Chem. 2004, 23, 619–623. https://doi.org/10.1016/j.trac.2004.06.005
  29. Oliveira, M.R.L.; De Bellis, V.M. Preparation of Novel Cobalt(III) Complexes with Dithiocarbimates Derived from Sulfonamides. Transit. Met. Chem. 1999, 24, 127–130. https://doi.org/10.1023/A:1006945923839
  30. Mihsen, H.H.; Abass, S.K.; Abass, A.K.; Hussain, K.A.; Abbas, Z.F. Template Synthesis of Sn(II), Sn(IV) and Co(II) Complexes via 3-Aminopropyltriethoxysilane and Salicylaldehyde and Evaluate Their Antibacterial Sensitivity. Asian J. Chem. 2018, 30, 2277.https://doi:10.14233/ajchem.2018.21439
  31. Jamuna Rani, P.; Thirumaran, S.; Ciattini, S.Synthesis and Characterization of Ni(II) and Zn(II) Complexes of (furan-2-yl)methyl(2-(thiophen-2-yl)ethyl)dithiocarbamate (ftpedtc): X-ray Structures of [Zn(ftpedtc)2(py)] and [Zn(ftpedtc)Cl(1,10-phen)] Spectrochim. Acta A Mol. Biomol. Spectrosc.2015, 137, 1164–1173. http://dx.doi.org/10.1016/j.saa.2014.09.019
  32. Mohammad, A.; Varshney, C.; Nami, S.A.A. Synthesis, Characterization and Antifungal Activities of 3d-Transition Metal Complexes of 1-Acetylpiperazinyldithioc Arbamate, M(acpdtc)2.Spectrochim. Acta A Mol. Biomol. Spectrosc.2009, 73, 20–24.https://doi.org/10.1016/j.saa.2009.01.005
  33. Geetha, N.;Thirumaran, S. Characterization Studies and Cyclic Voltammetry on Nickel (II) Amino Acid Dithiocarbamates with Triphenylphosphine in the Coordination Sphere‏. J. Serbian Chem. Soc. 2008, 73, 169–177. https://doi.org/10.2298/JSC0802169G
  34. Chauhan, H.P.S.; Shaik, N.M. Synthetic, Spectral, Thermal and Antimicrobial Studies on Some Mixed 1,3-Dithia-2-Stannacyclopentane Derivatives with Dialkyldithiocarbamates. J. Inorg. Biochem. 2005, 99, 538–545. https://doi.org/10.1016/j.jinorgbio.2004.10.031
  35. Nami, S.A.A.; Siddiqi, K.S. Convenient One-Pot Synthesis of Symmetrical Dithiocarbamates. Synth. React. Inorg. Met. Chem. 2004, 34, 1581–1590.https://doi.org/10.1081/SIM-200026593
  36. Tweedy, B.G. Possible Mechanism for Reduction of Elemental Sulfur by Monilinia Fructicola. In Phytopathology;3340 PILOT KNOB ROAD, ST PAUL, MN 55121: Amer Phytopathological Soc, 1964; pp 910-914.