Синтез, характеристика й антибактеріальна активність комплексів іонів Sn(ii) та Sn(iv), що містять n-алкіл-n-фенілдитіокарбаматні ліганди

2023;
: cc. 729 - 739
1
Chemistry Department, College of Science, Kerbala University
2
Department of Chemistry, College of Science, University of Kerbala
3
Chemistry Department, College of Education for Pure Sciences, Kerbala University

У цій роботі ліганди з донорними атомами S2, N-метил-N-фенілдитіокарбамат натрію [L1] та N-етил-N-фенілдитіокарбамат натрію [L2] одержано з дисульфіду карбону за допомогою N-метиланіліну та N-етиланіліну, відповідно. Комплекси іонів Sn(II) та Sn(IV) з N-алкіл-N-фенілдитіокарбаматом одержано та охарактеризовано за допомогою CHNS елементного аналізу, інфрачервоної спектроскопії (FT-IR), 1Н ЯМР-спектроскопії, мас-спектроскопії, УФ-спектроскопії, вимірювання магнітної сприйнятливості та провідності. Аналітичні та спектральні дані показують, що стехіометрія для всіх комплексів становить 1 : 2 метал до ліганду. Спектральні дані підтверджують добру координацію дитіокарбаматного ліганду з металом через атоми сульфуру в дитіокарбаматному фрагменті. Вимірювання молярної провідності комплексів з використанням ДМФА як розчинника показало, що комплекси Sn(II) є неіонними, тоді як комплекси Sn(IV) є іонними. Ліганди L1 і L2 та їхні комплекси досліджено щодо бактерій Staphylococcusaureus і Escherichiacoli.

  1. Kumar, D.N. Molecular Structure Study of Thio Schiff Base Complexes of Organotin (IV): Synthesis, Spectroscopic and Thermal Methods. J. Mol. Struct. 2021, 1227, 129569. https://doi.org/10.1016/j.molstruc.2020.129569
  2. Stasevych, M.; Zvarych, V.; Khomyak, S.; Lunin, V.; Kopak, N.; Novikov, V.; Vovk, M. Proton-Initiated Conversion of Dithiocarbamates of 9,10-Anthracenedione. Chem. Chem. Technol. 2018, 12, 300–304. https://doi.org/10.23939/chcht12.03.300
  3. Lee, S.M.; Heard, P.J.; Tiekink, E.R.T. Molecular and Supramolecular Chemistry of Mono- and Di-Selenium Analogues of Metal Dithiocarbamates. Coord. Chem. Rev. 2018, 375, 410–423. https://doi.org/10.1016/j.ccr.2018.03.001
  4. Khan, N.; Farina, Y.; Mun, L.K.; Rajab, N.F.; Awang, N. Syntheses, Characterization, X-ray Diffraction Studies and in vitro Antitumor Activities of Diorganotin(IV) Derivatives of Bis(p-Substituted-N-Methylbenzylaminedithiocarbamates). Polyhedron2015, 85, 754–760. http://dx.doi.org/10.1016/j.poly.2014.08.063
  5. Landini, P.; Antoniani, D.; Burgess, J.G.; Nijland, R. Molecular Mechanisms of Compounds Affecting Bacterial Biofilm Formation and Dispersal. Appl. Microbiol. Biotechnol. 2010, 86, 813–823. https://doi.org/10.1007/s00253-010-2468-8
  6. Sedlacek, J.; Martins, L.M.; Danek, P.; Pombeiro, A.J.L.; Cvek, B. Diethyldithiocarbamate Complexes with Metals Used as Food Supplements Show Different Effects in Cancer Cells. J. Appl. Biomed. 2014, 12, 301–308. http://dx.doi.org/10.1016/j.jab.2014.04.002
  7. Menezes, D.C.; De Lima, G.M.; Porto, A.O.; Donnici, C.L.; Ardisson, J.D.; Doriguetto, A.C.; Ellena, J. Synthesis, Characterisation and Thermal Decomposition of Tin(IV) Dithiocarbamate Derivatives - Single Source Precursors for Tin Sulfide Powders. Polyhedron2004, 23, 2103–2109. https://doi.org/10.1016/j.poly.2004.06.007
  8. Ronconi, L.; Sadler, P.J. Applications of Heteronuclear NMR Spectroscopy in Biological and Medicinal Inorganic Chemistry. Coord. Chem. Rev. 2008, 252, 2239–2277. https://doi.org/10.1016/j.ccr.2008.01.016
  9. Gasser, G.; Metzler-Nolte, N. The Potential of Organometallic Complexes in Medicinal Chemistry‏. Curr. Opin. Chem. Biol.2012, 16, 84–91. https://doi.org/10.1016/j.cbpa.2012.01.013
  10. Pellerito, C.; Nagy, L.; Pellerito, L.; Szorcsik, A. Biological Activity Studies on Organotin(IV)n+ Complexes and Parent Compounds‏. J. Organomet. Chem. 2006, 691, 1733–1747. https://doi.org/10.1016/j.jorganchem.2005.12.025
  11. Alama, A.; Tasso, B.; Novelli, F. Organometallic Compounds in Oncology: Implications of Novel Organotins as Antitumor Agents‏. Drug Discov. Today2009,14, ‏500–508. https://doi.org/10.1016/j.drudis.2009.02.002
  12. Onwudiwe, D.C.; Nthwane, Y.B.; Ekennia, A.C.; Hosten, E. Synthesis, Characterization and Antimicrobial Properties of Some Mixed Ligand Complexes of Zn(II) Dithiocarbamate with Different N-donor Ligands. Inorganica Chim. Acta2016,447, 134–141.https://doi.org/10.1016/j.ica.2016.03.033
  13. Javed, F.; Sirajuddin, M.; Ali, S.; Khalid, N.; Tahir, M.N.; Shah, N.A.;Rasheed, Z.;Khan, M.R. Organotin(IV) Derivatives of o-Isobutyl Carbonodithioate: Synthesis, Spectroscopic Characterization, X-ray Structure, HOMO/LUMO and in vitro Biological Activities‏. Polyhedron2016,104, 80–90. https://doi.org/10.1016/j.poly.2015.11.041
  14. Tian, L.; Liu, X.; Zheng, X.; Sun, Y. Synthesis, Characterization and Cytotoxic Activity of New Diorganotin(IV) Complexes of N‐(3,5‐dibromosalicylidene)Tryptophane‏. Appl. Organomet. Chem. 2011, 25, 298-304.https://doi.org/10.1002/aoc.1758
  15. Mostafa, A.M.; Mwafy, E.A.; Hasanin, M.S. One-Pot Synthesis of Nanostructured CdS, CuS, and SnS by Pulsed Laser Ablation in Liquid Environment and Their Antimicrobial Activity. Opt. Laser Technol. 2020, 121, 105824. https://doi.org/10.1016/j.optlastec.2019.105824
  16. Ramasamy, K.; Kuznetsov, V.L.; Gopal, K.; Malik, M.A.; Raftery, J.; Edwards, P.P.; O’Brien, P. Organotin Dithiocarbamates: Single-Source Precursors for Tin Sulfide Thin Films by Aerosol-Assisted Chemical Vapor Deposition (AACVD)‏. Chem. Mater. 2013, 25, 266–276. https://doi.org/10.1021/cm301660n
  17. Onwudiwe, D.C.; Ajibade, P.A. Synthesis and Crystal Structure of Bis(N-Alkyl-N-Phenyl Dithiocarbamato)Mercury(II). J. Chem. Crystallogr. 2011, 41, 980–985.https://doi.org/10.1007/s10870-011-0029-3
  18. de Faria Franca, E.; Oliveira, M.R.L.; Guilardi, S.; de Andrade, R.P.; Lindemann, R.H.; Amim, J.; Ellena, J.; De Bellis, V.M.; Rubinger, M.M.M. Preparation, Crystal Structure and Spectroscopic Characterization of Nickel(II) Complexes with Dithiocarbimate Derivated of Sulfonamides. Polyhedron2006, 25, 2119–2126. https://doi.org/10.1016/j.poly.2005.11.035
  19. Manoussakis, G.E.; Tsipis, C.A.; Christophides, A.G. Tris(Dialkyldiselenocarbamates) of Arsenic, Antimony, and Bismuth. Inorg. Chem. 1973, 12, 3015–3017. https://doi.org/10.1021/ic50130a059
  20. Chen, D.; Lai, C.S.; Tiekink, E.R.T. Crystallographic Report: Tris(N,N-Dimethyldithiocarbamato)Arsenic(III) Dichloromethane Solvate. Appl. Organomet. Chem. 2003, 17, 813-814. https://doi.org/10.1002/aoc.515https://doi.org/10.1002/aoc.515
  21. Ritsema, R. Speciation of Organotin and Organoarsenic in Water Samples. Mikrochim. Acta1992, 109, 61–65. https://doi.org/10.1007/BF01243211
  22. Adeyemi, J.O.; Onwudiwe, D.C.; Hosten, E.C. Organotin(IV) Complexes Derived from N-Ethyl-N-Phenyldithiocarbamate: Synthesis, Characterization and Thermal Studies. J. Saudi Chem. Soc.2018, 22, 427–438.https://doi.org/10.1016/j.jscs.2017.08.004
  23. Mahato, M.; Mukherji, S.; Van Hecke, K.; Harms, K.; Ghosh, A.; Nayek, H.P. Mononuclear Homoleptic Organotin(IV) Dithiocarbamates: Syntheses, Structures and Antimicrobial Activities. J. Organomet. Chem. 2017, 853, 27–34.https://doi.org/10.1016/j.jorganchem.2017.10.027
  24. Adeyemi, J.O.; Onwudiwe, D.C.; Singh, M. Synthesis, Characterization, and Cytotoxicity Study of Organotin(IV) Complexes Involving Different Dithiocarbamate Groups. J. Mol. Struct. 2019, 1179, 366–375.https://doi.org/10.1016/j.molstruc.2018.11.022
  25. Mihsen, H.H.; Shareef, N.K.; Alwazni, W.S. Synthesis, Characterization and Antibacterial Studies of Silver Complex of 3-Aminopropyltriethoxysilane. Asian J. Chem. 2018, 30, 1465. https://doi:10.14233/ajchem.2018.21177
  26. Mihsen, H.H.; Shareef, N.K. Synthesis, Characterization of Mixed-Ligand Complexes Containing 2,2-Bipyridine and 3-Aminopropyltriethoxysilane. J Phys Conf Ser2018, 1032,012066.https://doi:10.1088/1742-6596/1032/1/012066
  27. Hassan, Z.M.; Alattar, R.A.; Abass, S.K.; Mihsen, H.H.; Abbas, Z. F.;Hussain, K.A. Synthesis, Characterization and Biological Activity of Mixed Ligand (Imine of Benzidine and 1,10-Phenanthroline) Complexes with Fe(II), Co(II), Ni(II) and Cu(II) Ions. Chem. Chem. Technol. 2022, 16, 15–24. https://doi.org/10.23939/chcht16.01.015
  28. Hartwell, S.K.; Grudpan, K.; Christian, G.D. Bead Injection with a Simple Flow-Injection System: An Economical Alternative for Trace Analysis. Trends Anal. Chem. 2004, 23, 619–623. https://doi.org/10.1016/j.trac.2004.06.005
  29. Oliveira, M.R.L.; De Bellis, V.M. Preparation of Novel Cobalt(III) Complexes with Dithiocarbimates Derived from Sulfonamides. Transit. Met. Chem. 1999, 24, 127–130. https://doi.org/10.1023/A:1006945923839
  30. Mihsen, H.H.; Abass, S.K.; Abass, A.K.; Hussain, K.A.; Abbas, Z.F. Template Synthesis of Sn(II), Sn(IV) and Co(II) Complexes via 3-Aminopropyltriethoxysilane and Salicylaldehyde and Evaluate Their Antibacterial Sensitivity. Asian J. Chem. 2018, 30, 2277.https://doi:10.14233/ajchem.2018.21439
  31. Jamuna Rani, P.; Thirumaran, S.; Ciattini, S.Synthesis and Characterization of Ni(II) and Zn(II) Complexes of (furan-2-yl)methyl(2-(thiophen-2-yl)ethyl)dithiocarbamate (ftpedtc): X-ray Structures of [Zn(ftpedtc)2(py)] and [Zn(ftpedtc)Cl(1,10-phen)] Spectrochim. Acta A Mol. Biomol. Spectrosc.2015, 137, 1164–1173. http://dx.doi.org/10.1016/j.saa.2014.09.019
  32. Mohammad, A.; Varshney, C.; Nami, S.A.A. Synthesis, Characterization and Antifungal Activities of 3d-Transition Metal Complexes of 1-Acetylpiperazinyldithioc Arbamate, M(acpdtc)2.Spectrochim. Acta A Mol. Biomol. Spectrosc.2009, 73, 20–24.https://doi.org/10.1016/j.saa.2009.01.005
  33. Geetha, N.;Thirumaran, S. Characterization Studies and Cyclic Voltammetry on Nickel (II) Amino Acid Dithiocarbamates with Triphenylphosphine in the Coordination Sphere‏. J. Serbian Chem. Soc. 2008, 73, 169–177. https://doi.org/10.2298/JSC0802169G
  34. Chauhan, H.P.S.; Shaik, N.M. Synthetic, Spectral, Thermal and Antimicrobial Studies on Some Mixed 1,3-Dithia-2-Stannacyclopentane Derivatives with Dialkyldithiocarbamates. J. Inorg. Biochem. 2005, 99, 538–545. https://doi.org/10.1016/j.jinorgbio.2004.10.031
  35. Nami, S.A.A.; Siddiqi, K.S. Convenient One-Pot Synthesis of Symmetrical Dithiocarbamates. Synth. React. Inorg. Met. Chem. 2004, 34, 1581–1590.https://doi.org/10.1081/SIM-200026593
  36. Tweedy, B.G. Possible Mechanism for Reduction of Elemental Sulfur by Monilinia Fructicola. In Phytopathology;3340 PILOT KNOB ROAD, ST PAUL, MN 55121: Amer Phytopathological Soc, 1964; pp 910-914.