Investigation of the Sorption Capacity of Polyvinylpyrrolidone Copolymers As the Basis of Hydrogel Cosmetic Masks with Plant Biomass Extracts

2022;
: pp. 555 - 563
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University, Ukraine
6
Lviv Polytechnic National University

The possibility of using hydrogels based on copolymers of polyvinylpyrrolidone with 2 hydroxyethylmethacrylate to saturate them with plant extracts was established. Hydrogel materials were obtained with extracts of Calendula officinalis and Arnica montana. The sorption capacity of the hydrogels regarding the extract data was determined. The bactericidal and fungicidal activity of the obtained hydrogel materials with extracts of Calendula officinalis and Arnica montana on bacterial strains of Escherichia coli, Staphylococcus aureus and fungal strains of Candida tenuis, Aspergilus niger were investigated.

[1] Nilforoushzadeh, M.A.; Amirkhani, M.A.; Zarrintaj, P.; Moghaddam, A.S.; Mehrabi, T.; Alavi, S.; Sisakht, M.M. Skin Care and Rejuvenation by Cosmeceutical Facial Mask. J. Cosmet. Dermatol. 2018, 17(5), 693–702. https://doi.org/10.1111/jocd.12730
[2] Konechna, R.; Khropot, O.; Petrina, R.; Kurka, M.; Gubriy, Z.; Novikov, V. Research of Antioxidant Properties of Extracts of the Plants and the Callus Biomass. Asian J. Pharm. Clin. Res. 2017, 10(7), 182–184. https://doi.org/10.22159/ajpcr.2017.v10i7.18408
[3] Krvavych, A.S.; Konechna, R.T.; Mylianych, A.O.; Petrina, R.O.; Fedoryshyn, O.M.; Mykytyuk, O.M.; Semenyshyn, Ye.M.; Atamaniuk, V.M.; Novikov, V.P. Kinetics and Mechanism of the Extraction of Biologically Active Substances from Wild Species G. Imbricatus. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 5, 111–115.
[4] Konechna, R.T.; Konechnyi, Y.T.; Petrina, R.O.; Shykula, R.H.; Wieczorek, P.; Jasicka-Misiak, I.; Novikov, V.P. Obtaining and research of callus mass of Gentiana lutea L. roots. Res. J. Pharm. Biol. Chem. Sci. 2015, 6(4), 1490–1495.
[5] Pal, K.; Banthia, A.K.; Majumdar, D.K. Polymeric Hydrogels: Characterization and Biomedical Applications. Des. Monomers Polym. 2009, 12(3), 197–200. https://doi.org/10.1163/156855509X436030
[6] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical Properties of Hydrogels Filled with Dispersed Nanoparticles. Chem. Chem. Technol. 2017, 11(4), 449–453. https://doi.org/10.23939/chcht11.04.449
[7] Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. https://doi.org/10.1016/j.addr.2012.09.010
[8] Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21(32-33), 3307–3329. https://doi.org/10.1002/adma.200802106
[9] Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49(8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
[10] Varvarenko, S.; Voronov, A.; Samaryk, V.; Tarnavchyk, I.; Nosova, N.; Kohut, A.; Voronov, S. Covalent Grafting of Polyacrylamide-Based Hydrogels to a Polypropylene Surface Activated with Functional Polyperoxide. React. Funct. Polym. 2010, 70(9), 647–655. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
[11] Lu, H.; Yuan, L.; Yu, X.; Wu, Ch.; He, D.; Deng, J. Recent Advances of on-Demand Dissolution of Hydrogel Dressings. Burns Trauma 2018, 6(35), 1–13. https://doi.org/10.1186/s41038-018-0138-8
[12] Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J. Funct. Biomater. 2018, 9(1), 13–33. https://doi.org/10.3390/jfb9010013
[13] Hennink, W. E.; Kim, S. W.; Feijen, J. Inhibition of Surface Induced Coagulation by Preadsorption of Albumin-Heparin Conjugates. J. Biomed. Mat. Res. 1984, 18(8), 911–926. https://doi.org/10.1002/jbm.820180806
[14] Perugini, P.; Bleve, M.; Redondi, R.; Cortinovis, F.; Colpani, A. In vivo Evaluation of the Effectiveness of Biocellulose Facial Masks as Active Delivery Systems to Skin. J. Cosmet. Dermatol. 2019, 19(3), 725–735. https://doi.org/10.1111/jocd.13051
[15] Pacheco, G.; De Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, É.; Trovatti, E. Bacterial Cellulose Skin Masks-Properties and Sensory Tests. J. Cosmet. Dermatol. 2018, 17(5), 840–847. https://doi.org/10.1111/jocd.12441
[16] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels. Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136-214. https://doi.org/10.5772/intechopen.72082
[17] Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications. J. Adv. Res. 2015, 6(2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006
[18] Jumadilov, T.; Kondaurov, R.; Imangazy, A.; Myrzakhmetova, N.; Saparbekova, I. Phenomenon of Remote Interaction and Sorption Ability of Rare Cross-Linked Hydrogels of Polymethacrylic Acid and Poly-4-vinylpyridine in Relation to Erbium Ions. Chem. Chem. Technol. 2019, 13(4), 451–458. https://doi.org/10.23939/chcht13.04.451
[19] Suberlyak, O.; Melnyk, J.; Baran, N. High-Hydrophilic Membranes for Dialysis and Hemodialysis. Engineering Biomaterials 2007, 63, 18–19.
[20] Skorokhoda, V.; Semenyuk, V.; Melnyk, Y.; Suberlyak, O. Hydrogels Penetration and Sorption Properties on the Substances Release Controlled Processes. Chem. Chem. Technol. 2009, 3(2), 117–121. https://doi.org/10.23939/chcht03.02.117
[21] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І; Stasiuk, A.; Samaryk, V.; Varvarenko, S.; Voronov, S. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45–54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54
[22] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, Kh.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly(ethylene glycol). Chem. Chem. Technol. 2014, 8(2), 171–176. https://doi.org/10.23939/chcht08.02.171.
[23] Barman, A.; Das, M. Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Mondal, M., Ed.; Springer; Cham, 2018, 1103-130. https://doi.org/10.1007/978-3-319-76573-0_37-1
[24] La Gatta, A.; Salzillo, R.; Catalano, C.; D'Agostino, A.; Pirozzi, A.V.A.; De Rosa, M.; Schiraldi, C. Hyaluronan-based hydrogels as dermal fillers: The Biophysical Properties That Translate into a "Volumetric" Effect. PLоS ONE 2019, 14(6), e0218287. https://doi.org/10.1371/journal.pone.0218287
[25] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4(4), 297–304. https://doi.org/10.23939/chcht04.04.297
[26] Nosova, N.G.; Samaryk, V.J.; Varvarenko, S.M.; Ferens, M.V.; Voronovska, A.V.; Nagornyak, M.I.; Khomyak, S.V.; Nadashkevych, Z.J.; Voronov, S.A. Porous Polyacrylamide Hydrogels: Preparation and Properties. Vopr. Khimii i Khimicheskoi Tekhnologii 2016, 5–6, 78–86.
[27] Jumadilov, T.; Abilov, Z.; Grazulevicius, J.; Zhunusbekova, N.; Kondaurov, R.; Agibayeva, L.; Akimov, A. Mutual Activation and Sorption Ability of Rare Cross-Linked Networks in Intergel System Based on Polymethacrylic Acid and Poly-4-vinylpyridine Hydrogels in Relation to Lanthanum Ions. Chem. Chem. Technol. 2017, 11(2), 188–194. https://doi.org/10.23939/chcht11.02.188
[28] Yevchuk, I.; Demchyna, O.; Kochubey, V.; Romaniuk, H.; Koval, Z. Synthesis and Characterization of Organic-Inorganic Membranes Containing Sulphogroups. Chem. Chem. Technol. 2013, 7(1), 89–93. https://doi.org/10.23939/chcht07.01.089
[29] Jumadilov, T.; Abilov, Z.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov, A. Influence of Hydrogels Initial State on Their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9(4), 459–462. https://doi.org/10.23939/chcht09.04.459
[30] Montheard, J.-P.; Chatzopoulos, M.; Chappard, D. 2-Hydroxyethyl Methacrylate (HEMA): Chemical Properties and Applications in Biomedical Fields. J. Macromol. Sci. C 1992, 32(1), 1–34. https://doi.org/10.1080/15321799208018377
[31] Malesic, N.; Rusmirovic, J.; Jovasevic, J.; Perisic, M.; Dimitrijevic-Brankovic, S.; Filipovic, J.; Tomic, S. Antimicrobial Hydrogels Based on 2-Hydroxyethyl Methacrylate and Itaconic Acid Containing Silver(I) Ion. Tehnika 2014, 69(4), 563–568. https://doi.org/10.5937/tehnika1404563M
[32] Wang, J.; Wu, W. Swelling Behaviors, Tensile Properties and Thermodynamic Studies of Water Sorption of 2-Hydroxyethyl Methacrylate/Epoxy Methacrylate Copolymeric Hydrogels. Eur. Polym. J. 2005, 41(5), 1143–1151. https://doi.org/10.1016/j.eurpolymj.2004.11.034
[33] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of Structure and Properties of pHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13(20), 4580–4594. https://doi.org/10.3390/ma13204580
[34] Grytsenko, О.; Pukach, Р.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. Using the Scheffe’s Method in the Study of Mathematical Model of Optimization the Polymeric Hydrogels Composite Structures. Math. Model. Comput. 2019, 6(2), 258–267. https://doi.org/10.23939/mmc2019.02.258
[35] Skorokhoda, V. Matrix Polymerization of 2-Hydroxyethylmethacrylate in the Presence of Polyvinylpyrrolidone in Permanent Magnetic Field. Chem. Chem. Technol. 2010, 4(3), 191–196. https://doi.org/10.23939/chcht04.03.191
[36] Suberlyak, O.V.; Baran, N.M.; Melnyk, Y.Y.; Grytsenko, O.M.; Yaculchak, G.V. Regularities of Strengthening of Film Hydrogel Membranes Based on 2-Hydroxyetylmetacrylate Copolymers and Polyvinylpyrrolidone. Funct. Mater. 2020, 27(2), 329–333. https://doi.org/10.15407/fm27.02.329
[37] Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone) – a Versatile Polymer for Biomedical and beyond Medical Applications. Polym. Plast. Technol. Eng. 2015, 54(9), 923–943. https://doi.org/10.1080/03602559.2014.979506
[38] Grytsenko, O.M.; Suberlyak, O.V.; Moravskyi, V.S.; Gayduk, A.V. Investigation of Nickel Chemical Precipitation Kinetics. EasternEuropean J. Enterp. Technol. 2016, 1(6), 26–31, https://doi.org/10.15587/1729-4061.2016.59506
[39] Krasinskyi, V.; Suberlyak, O.; Dulebová, L.; Antoniuk, V. Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Eng. Mater. 2017, 756, 3–10. https://doi.org/10.4028/www.scientific.net/KEM.756.3
[40] Grytsenko, O.; Naumenko, O.; Suberlyak, O.; Dulebova, L.; Berezhnyy, B. V. The Technological Parameters Optimization of the Graft Copolymerization 2-Hydroxyethyl Methacrylate with Polyvinylpyrrolidone for Nickel Deposition from Salts. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 1, 25–32. https://doi.org/10.32434/0321-4095-2020-128-1-25-32
[41] Krasinskyi, V.; Suberlyak, O.; Zemke, V.; Klym, Y.; Gaidos, I. The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chem. Chem. Technol. 2019, 13(1), 59–63. https://doi.org/10.23939/chcht13.01.059
[42] Suberlyak, O.V.; Baran, N.M.; Melnyk, Y.Y.; Grytsenko, O.M.; Yatsulchak, H.V. Influence of the Molecular Weight of Polyvinylpyrrolidone on the Physicomechanical Properties of Composite Polyamide Hydrogel Membranes. Mater. Sci. 2020, 55(5), 758–764. https://doi.org/10.1007/s11003-020-00368-3
[43] Tang, Q.; Yu, J.-R.; Chen, L.; Zhu, J.; Hu, Z.-M. Preparation and Properties of Morphology Controlled Poly(2-hydroxyethyl methacrylate)/Poly(N-vinyl pyrrolidone) Double Networks for Biomedical Use. Curr. Appl. Phys. 2010, 10(3), 766–770. https://doi.org/10.1016/j.cap.2009.09.012
[44] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič, V. Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics 2021, 10(5), 620. https://doi.org/10.3390/electronics10050620
[45] Suberlyak, O.; Skorokhoda, V.; Kozlova, N.; Melnyk, Yu.; Semenyuk, N.; Chopyk, N. The Polyvinylpyrrolidone Graft Copolymers and Soft Contact Lenses on Their Basis. ScienceRise 2014, 5(3), 52–57. https://doi.org/10.15587/2313-8416.2014.33235
[46] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312
[47] Jovašević, J.; Dimitrijević, S.; Filipović, J.; Tomić, S.; Mićić, M.; Suljovrujić E. Swelling, Mechanical and Antimicrobial Studies of Ag/P(HEMA/IA)/PVP Semi-IPN Hybrid Hydrogels. Acta Phys. Pol. A 2011, 120, 279–283. https://doi.org/10.12693/APhysPolA.120.279
[48] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Gaydos, I.; Kushnirchuk, M.; Berezhnyy, B. Mathematical Modeling and Optimization of Technological Parameters of the Obtaining Process of Hydrogel Medical Dressings. Books of Abstracts, 3rd International Conference on Informatics and Data-Driven Medicine, IDDM 2020, Vaxjo, November 19–21, 2020, CEUR Workshop Proceedings, 2753, 170–177.
[49] Bashtyk, Y.; Fechan, A.; Grytsenko, O.; Hotra, Z.; Kremer, I.; Suberlyak, O.; Aksimentyeva, O.; Horbenko, Y.; Kotsarenko M. Electrical Elements of the Optical Systems Based on Hydrogel-Electrochromic Polymer Composites. Mol. Cryst. Liq. Cryst. 2019, 672, 150–158. https://doi.org/10.1080/15421406.2018.1550546
[50] Suberlyak, O.; Hrytsenko, O.; Hischak, Kh. Influence of the Metal Surface of Powder Filler on the Structure and Properties of Composite Materials Based on the Copolymers of Methacrylates with Polyvinylpyrrolidone. Mater. Sci. 2016, 52, 155–164. https://doi.org/10.1007/s11003-016-9938-9
[51] Suberlyak, O.; Grytsenko, O. Fundamentals of Technology for Obtaining Metal-Filled Hydrogel Composites. Rastr-7, Lviv 2020, 316.