Synthesis and Investigation of Properties of Epoxy-Novolac Copolymers Based on Polycyclic Bisphenols of Norbornane Type

2024;
: pp. 546 - 557
1
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University
2
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State Universit
3
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
4
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University
5
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University
6
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University
7
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University
8
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University
9
Petre Melikishvili Institute of Physical and Organic Chemistry of Ivane Javakhishvili Tbilisi State University

The purpose of this study was the synthesis of copolymers based on the novolac oligomer and diglycidal ether of polycyclic bisphenols of the norbornane type and the study of the curing process of the obtained copolymers. Copolymers were synthesized based on polycyclic bisphenols: 4,4'-(2-norbornilidene) diphenyl; 4,4'-(hexahydro-4,7-methylenindane)-di-o-cresol; 4,4′-(hexahydro-4,7-methylenindane-5-ylidene) diphenol; 4,4′-(decahydro-1,4,5,8 - dimethylennaft-2-ylidene)diphenol; and 2,2-bis-(4-oxyphenyl)propane. The synthesis was carried out in two stages. In the first stage, the main chemical process during copolymerization is the interaction of epoxy groups with phenolic hydroxyls of the novolac oligomer, which leads to the formation of a block copolymer. In the second stage of the process polymers with a three-dimensional structure are formed as a result of the curing process. The optimal curing mode was set. Fiberglass plastics were prepared from the obtained copolymers, which were characterized by good physico-mechanical and thermal properties.

[1] Gunka, V.; Demchuk, Y.; Drapak, I.; Korchak, B.; Bratychak, M. Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde. Chem. Chem. Technol.2023, 17, 339–346. https://doi.org/10.23939/chcht17.02.339

[2] Nair, C. P. R. Advances in Addition-Cure Phenolic Resins. Prog. Polym. Sci. 2004, 29, 401–498. https://doi.org/10.1016/j.progpolym- sci.2004.01.004

[3] Gardziella, A.; Pilato, L. A.; Knop, A. Phenolic resins: Chemis- try applications, standardization, safety and ecology; Springer: New York, 2000.

[4]. Bajpai, M.; Shukla, V.; Habib, F. Development of a Heat Re- sistant UV-Curable Epoxy Coating. Prog. Org. Coat. 2005, 53, 239–245. https://doi.org/10.1016/j.porgcoat.2004.12.010

[5] He, H.; Li, K.; Wang, J.; Wang, J.; Gu, J.; Li, R. Effects of No- volac Resin Modification on Mechanical Properties of Carbon Fi- ber/Epoxy Composites. Polym. Compos. 2011, 32, 227–235. https://doi.org/10.1002/pc.21037

[6] Gibson, G. In Brydson's Plastics Materials (8th Edition), Chapter 27 - Epoxy Resins; Gilbert Marianne, Ed.; ScienceDirect 2017; pp. 773–797. https://doi.org/10.1016/B978-0-323-35824-8.00027-X

[7] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtain- ing and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J. Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191

[8] Ooi, S. K.; Cook, W. D.; Simon, G. P.; Such, C. H. DSC Studies of the Curing Mechanisms and Kinetics of DGEBA Using Imidaz- ole Curing Agents. Polymer 2000, 41, 3639–3649. https://doi.org/10.1016/S0032-3861(99)00600-X

[9] Liu, W. B.; Qiu, Q. H.; Wang, J.; Huo, Z. C.; Sun, H. Curing Ki- netics and Properties of Epoxy Resin–Fluorenyl Diamine Systems. Polymer 2008, 49, 4399–4405. https://doi.org/10.1016/j.poly- mer.2008.08.004

[10] Pan, G. Y.; Du, Z. J.; Zhang, C.; Li, C. J.; Yang, X. P.; Li, H.Q. Synthesis, Characterization, and Properties of Novel Novolac Epoxy Resin Containing Naphthalene Moiety. Polymer 2007, 48, 3686–3693. https://doi.org/10.1016/j.polymer.2007.04.032

[11] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem.Technol. 2022, 16, 499–506. https://doi.org/10.23939/chcht16.04.499

12] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl) silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035

[13] Mukbaniani, O.; Tatrishvili, Y.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo- Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807

[14] Papava, G.Sh.; Chitrekashvili, I.A.; Dokhturishvili, N.S.; Archvadze, K. T.; Liparteliani, R.G.; Gurgenishvili, M.B. Regularities of the Reaction of Epichlorohydrin with Polycyclic Bisphenols. Oxid. Commun. 2022, 45, 760–769.

[15] Papava, G.Sh.; Chitrekashvili, I.A.; Gelashvili, N.S.; Gavashelidze, E.A.; Khotenashvili, N.S.; Papava, K.R. Study of the Formation of Epoxy Polymers Based on Diglycidal Ethers of Polycy- clic Bisphenols of the Norbornane Type. Oxid. Commun. 2022, 45, 770–779.

[16] Gavashelidze, E.; Maisuradze, N.; Dokhturishvili, N.; Papava, G.; Gelashvili, N.; Molodinashvili, Z.; Gurgenishvili, M.; Chitrekashvili, I. Polyuretanes on the Basis of Card-Type Polycyclic Bisphenols Dif- ferent Diisocyanates; Bull. Nat. Acad. Sci. Geo. 2012, 6, 113–116.

[17] Papava, G. Sh.; Chitrekashvili, I. A.; Gurgenishvili, M. B.; Gavashelidze, E. A.; Gelashvili, N. S.; Khotenashvili, N. S. Thermo- and Heat-Resistant Polymers Based on Diglycidyl Ethers of Bi- sphenols with Cyclic Substituents. Oxid. Commun. 2023, 46, 644– 654.

[18] Papava, G.Sh.; Dokhturishvili, N.S.; Chitrekashvili, I.A.; Archvadze, K.T.; Liparteliani, R.G.; Tabukashvili, Z.Sh. Dependence of the Thermal Properties of Epoxy Polymers on the Hardener Structure. Oxid. Commun. 2023, 46, 655–665.

[19] Papava, G.; Gelashvili, N.; Molodinashvili, Z.; Gurgenishvili, M.; Chitrekashvili, I. Synthesis and Study of Phenol-Formaldehyde Type Polymers on the Basis of Bisphenol with Adamantane Grouping. J. Balkan Trib. Assoc. 2011, 17, 426–435.

[20] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Markarashvili, E.; Tatrishvili, T. Interpenetrating Network on the Basis of Methylcyclotetrasiloxane Matrix. Chem. Chem. Technol.2019, 13, 1–10. https://doi.org/10.23939/chcht13.01.001

[21] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Tatrishvili, T.; Markarashvili, E. Fluorine-Containing Siloxane Based Polymer Electrolyte Membranes. Chem. Chem. Technol. 2019, 13, 407–534. https://doi.org/10.23939/chcht13.04.407

[22] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325

[23] Guo, Q.; Dean, J. M.; Grubbs, R. B.; Bates, F. S.; Block Copoly- mer Modified Novolac Epoxy Resin. Polym. Sci. Ser. A: Polym. Phys. 2003, 41, 1994–2003. https://doi.org/10.1002/polb.10554

[24] Tao, Z.; Yang, S.; Ge, Z.; Chen, J.; Fan, L. Synthesis and Proper- ties of Novel Fluorinated Epoxy Resins Based on 1,1-bis(4-glycidyl- lesterphenyl)-1-(3′-trifuoromethylphenyl)- 2,2,2-trifluoroethane. Eur. Polym. J. 2007, 43, 550–560. https://doi.org/10.1016/j.eur- polymj.2006.10.030

[25] Paluvai, N. R.; Mohanty, S.; Nayak, S. K. Synthesis and Modifi- cation of Epoxy Resins and their Composites: A Review. Polym. Plast. Technol. Eng. 2014, 53, 1723–1758. https://doi.org/10.1080/03602559.2014.919658

[26] Cheng, J.; Li J.; Zhang, J. Y. Curing Behavior and Thermal Prop- erties of Trifunctional Epoxy Resin Cured by 4; 4′-Diaminodiphenyl Sulfone. Express Polym. Lett. 2009, 3, 501–509. https://doi.org/10.3144/expresspolymlett.2009.62

[27] Meenakshi, K. S.; Pradeep, E.; Sudhan, J.; Kumar, S. A. Devel- opment and Characterization of New Phosphorus Based Flame Re- tardant Tetraglycidyl Epoxy Nanocomposites for Aerospace Applica- tion. Bull. Mat. Sci. 2012, 35, 129–136. https://doi.org/10.1007/s12034-012-0271-0

[28] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modu- lation of Optical Information. Chem. Chem. Technol. 2023, 17, 758– 765. https://doi.org/10.23939/chcht17.04.758