Photocatalytic Systems Based on Crystalline Carbon Nitride for Hydrogen Production

2025;
: pp. 1 - 19
Authors:
1
L.V. Pysarzhevsky Institute of Physical Chemistry, NAS of Ukraine

The current state of research on photocatalytic systems based on crystalline graphitic carbon nitride (CCN) for H2 evolution from aqueous solutions of electron-donating substrates is considered. Methods of CCN synthesis and photocatalytic properties of different samples of CCN-undoped with a controlled defect structure and doped with metals and non-metals are discussed. Possible directions for further research of such CCN-based photocatalytic systems are outlined.

[1] Heterogeneous photocatalysis. From fundamentals to green applications; Colmenares, J. C.; Xu, Y.-J., Eds.; Springer-Verlag GmbH, 2016. https://doi.org/10.1007/978-3-662-48719-8

[2] Kryukov, A. I.; Stroyuk, A. L.; Kuchmii, S. Ya.; Pokhodenko V.D. Nanophotocatalysis; Akademperiodika: Kyiv, 2013.

[3] Stroyuk, O. L.; Kuchmiy, S. Ya. Semiconductor Photocatalytic Systems for the Reductive Conversion of CO2 and N2: A Review. Theor. Exp. Chem. 2018, 53, 359–386.https://doi.org/10.1007/s11237-018-9535-0

[4] Ovcharov, M. L.; Mishura, A. M.; Shvalagin, V. V.; Granchak, V.M. Semiconductor Nanocatalysts for CO2 Photoconversion Giving Organic Compounds: Design and Physicochemical Characteristics: A Review. Theor. Exp. Chem. 2019, 55, 2–28. https://doi.org/10.1007/s11237-019-09591-9

[5] Ovcharov, M. L.; Granchak, V. M. Photocatalytic Conversion of Nitrogen Oxides: Current State and Perspectives: A Review. Theor. Exp. Chem. 2021, 57, 30–63. https://doi.org/10.1007/s11237-021-09674-6

[6] Ovcharov, M. L.; Granchak, V. M. Photocatalytic Activation of Carbon Monoxide on Semiconductors and Derived Nanocomposites: Basic Principles and Mechanisms: A Review. Theor. Exp. Chem.2019, 55, 173–200. https://doi.org/10.1007/s11237-019-09608-3

[7] Ali, S. H.; Mohammed, S. S.; Al-Dokheily, M. E.; Algharagholy,L. Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation. Chem. Chem. Technol. 2022, 16, 639–651. https://doi.org/10.23939/chcht16.04.639

[8] Affat, S. S.; Mohammed, S. S. Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method. Chem. Chem. Technol. 2023, 17, 503–509. https://doi.org/10.23939/chcht17.03.503

[9] Stroyuk, O. L.; Kuchmiy, S. Ya. Heterogeneous Photocatalytic Selective Reductive Transformations of Organic Compounds: A Review. Theor. Exp. Chem. 2020, 56, 143–173. https://doi.org/10.1007/s11237-020-09648-0

[10] Kuchmiy, S. Ya.; Stroyuk, O. L. Selective Reductive Transformations of Organic Nitro Compounds in Heterogeneous Photocatalytic Systems: A Review. Theor. Exp. Chem. 2021, 57, 1– 29. https://doi.org/10.1007/s11237-021-09673-7

[11] Bellardita, M.; Loddo, V.; Palmisano, L. Formation of High Added Value Chemicals by Photocatalytic Treatment of Biomass. Mini-Rev. Org. Chem. 2020, 17, 884–901.https://doi.org/10.2174/1570193X17666200131112856

[12] Cheng, Q.; Yuan, Y.-J. Tang, R.; Liu, Q.-Y.; Bao, L.; Wang, P.; Zhong, J.; Zhao, Z.; Yu, Z.-T.; Zou, Z. Rapid Hydroxyl Radical Generation on (001) Facets Exposed Ultrathin Anatase TiO2 Nanosheets for Enhanced Photocatalytic Lignocelluloses-to-H2 Conversion. ACS Catal. 2022, 12, 2118–2125. https://doi.org/10.1021/acscatal.1c05713

[13] Wang, X.; Maeda, K.; Thomas A.; Takanabe K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water Under Visible Light. Nat. Mater. 2009, 8, 7680. https://doi.org/10.1038/nmat2317

[14] Maeda, K.; Wang, X.; Nishihara, Y.; Antonietti, M.; Domen, K. Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. J. Phys. Chem. C 2009, 113, 49404947. https://doi.org/10.1021/jp809119m

[15] Chen, X.; Jun, Y.-S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X.; Antonietti, M.; Wang, X. Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure forPhotocatalytic Hydrogen Evolution with Visible Light. Chem. Mater.2009, 21, 4093–4095. https://doi.org/10.1021/cm902130z

[16] Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem Soc. 2009, 131, 1680–1681.https://doi.org/10.1021/ja809307s

[17] Ye, S.; Wang, R.; Wu, M.-Z.; Yuan, Y.-P. A Review on g-C3N4 for Photocatalytic Water Splitting and CO2 Reduction. Appl. Surf. Sci. 2015, 358 A, 15–27. https://doi.org/10.1016/j.apsusc.2015.08.173

[18] Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

[19] Stroyuk, O. L.; Raevskaya, A. E.; Kuchmy, S. Ya. Photocatalytic Hydrogen Evolution under Visible Light Illumination in Systems Based on Graphitic Carbon Nitride: A Review. Theor. Exp. Chem.2018, 54, 1–35. https://doi.org/10.1007/s11237-018-9541-2

[20] Singh, A. K.; Das, C.; Indra, A. Scope and Prospect of Transition Metal-Based Cocatalysts for Visible Light-Driven Photocatalytic Hydrogen Evolution with Graphitic Carbon Nitride. Coord. Chem.Rev. 2022, 465, 214516. https://doi.org/10.1016/j.ccr.2022.214516

[21] Hayat, A.; Syed, J. A. S.; Al-Sehemi, A. G.; El-Nasser, K. S.;Taha, T. A.; Al-Ghamdi, A. A.; Amin, M. A.; Ajmal Z.; Iqbal, W.; Palamanit, A.; et al. State of the Art Advancement in Rational Design of g-C3N4 Photocatalyst for Efficient Solar Fuel Transformation, Environmental Decontamination and Future Perspectives. Int. J. Hydrogen En. 2022, 47, 10837–10867.https://doi.org/10.1016/j.ijhydene.2021.11.252

[22] Stroyuk, A. L.; Raevskaya, A. E.; Kuchmy, S. Ya. Photocatalytic Selective Oxidation of Organic Compounds in Graphitic Carbon Nitride Systems: A Review. Theor. Exp. Chem. 2019, 55, 147–172. https://doi.org/10.1007/s11237-019-09607-4

[23] Kuchmiy, S. Ya.; Stroyuk, O. L. Photocatalytic Fixation of Molecular Nitrogen in Systems Based on Graphite-Like Carbon Nitride: A Review. Theor. Exp. Chem. 2021, 57, 85–112. https://doi.org/10.1007/s11237-021-09678-2

[24] Kuchmiy, S. Ya. Photocatalytic Air Decontamination from Volatile Organic Pollutants Using Graphite-Like Carbon Nitride: A Review. Theor. Exp. Chem. 2021, 57, 237–261. https://doi.org/10.1007/s11237-021-09693-3

[25] Wang, J.; Wang, S. A Critical Review on Graphitic Carbon Nitride (g-C3N4)-Based Materials: Preparation, Modification and Environmental Application. Coord. Chem. Rev. 2022, 453, 214338. https://doi.org/10.1016/j.ccr.2021.214338

[26] Akhundi, A.; Badiei, A.; Ziarani, G. M.; Habibi-Yangjeh, A.; Muñoz-Batista, M. J.; Luque, R. Graphitic Carbon Nitride-Based Photocatalysts: Toward Efficient Organic Transformation for Value- Added Chemicals Production. Mol. Catal. 2020, 488, 110902. https://doi.org/10.1016/j.mcat.2020.110902

[27] Kuchmiy, S. Ya. Photocatalytic Reforming of Biomass Components Using Systems Based on Graphite-Like Carbon Nitride: A Review. Theor. Exp. Chem. 2023, 59, 231–259. https://doi.org/10.1007/s11237-024-09783-y

[28] Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang,H. Doping of Graphitic Carbon Nitride for Photocatalysis: A Review. Appl. Catal. B., 2017, 217, 388–406. https://doi.org/10.1016/j.apcatb.2017.06.003

[29] Patnaik, S.; Sahoo, D. P.; Parida, K. Recent Advances in Anion Doped g-C3N4 Photocatalysts: A Review. Carbon, 2020, 172, 682–711. https://doi.org/10.1016/j.carbon.2020.10.073

[30] Lee, C.-Y.; Zou, J.; Bullock, J.; Wallace G. G. Emerging Approach in Semiconductor Photocatalysis: Towards 3D Architectures for Efficient Solar Fuels Generation in Semi-Artificial Photosynthetic Systems. J. Photochem. Photobiol. C. 2019, 39, 142–160. https://doi.org/10.1016/j.jphotochemrev.2019.04.002

[31] He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu B. The Nonmetal Modulation of Composition and Morphology of g-C3N4-Based Photocatalysts. Appl. Catal. B. 2020, 269, 118828. https://doi.org/10.1016/j.apcatb.2020.118828

[32] Stroyuk, O.; Raievska, O.; Zahn, D. R. T. Graphitic Carbon Nitride Nanotubes: A New Material for Emerging Applications. RSC Adv. 2020, 10, 34059–34087. https://doi.org/10.1039/D0RA05580H

[33] Li, Y.; He, Z.; Liu, L.; Jiang, Y.; Ong, W.-J.; Duan, Y.; Ho, W.;Dong, F. Inside-and-Out Modification of Graphitic Carbon Nitride (g- C3N4) Photocatalysts via Defect Engineering for Energy and Environmental Science. Nano Energy 2022, 105, 108032. https://doi.org/10.1016/j.nanoen.2022.108032

[34] Wang, W.; Shu, Z.; Liao, Z.; Zhou, J.; Meng, D.; Li, T.; Zhao, Z.; Xu L. Sustainable One-Step Synthesis of Nanostructured Potassium poly(Heptazine imide) for Highly Boosted Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2021, 424, 130332. https://doi.org/10.1016/j.cej.2021.130332

[35] Lin, L.; Yu, Z.; Wang X. Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angew. Chem. 2019, 131, 6225–6236. https://doi.org/10.1002/ange.201809897

 [36] Lin, L.; Ou, H.; Zhang, Y.; Wang, X. Tri-s-Triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catal. 2016, 6, 3921–3931. https://doi.org/10.1021/acscatal.6b00922

[37] Song, H.; Luo, L.; Wang, S.; Zhang, G.; Jiang B. Advances in poly(Heptazine imide)/poly(triazine imide) Photocatalyst. Chin. Chem. Lett. 2024, 35, 109347.https://doi.org/10.1016/j.cclet.2023.109347

[38] He, F.; Hu, Y.; Zhong, H.; Wang, Z.; Peng, S.; Li, Y. Effect of Molten-Salt Modulation on the Composition and Structure of g-C3N4- Based Photocatalysts. Chem. Commun. 2023, 59, 10476–10487. https://doi.org/10.1039/D3CC03052K

[39] Yan, B.; Chen, Z.; Xu, Y. Amorphous and Crystalline 2D Polymeric Carbon Nitride Nanosheets for Photocatalytic Hydrogen/Oxygen Evolution and Hydrogen Peroxide Production. Chem. Asian J. 2020, 15, 2329–2340.https://doi.org/10.1002/asia.202000253

[40] Wang, S.; Zhang, J.; Bin Li, B.; Sun, H.; Wang, S. Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light- Driven Water Splitting: A Review. En. Fuels 2021, 35, 65046526. https://doi.org/10.1021/acs.energyfuels.1c00503

[41] Liu, J.; Fu, W.; Liao, Y.; Fan, J.; Xiang, Q. Recent Advances in Crystalline Carbon Nitride for Photocatalysis. J. Mater. Sci. Technol. 2021, 91, 224–240. https://doi.org/10.1016/j.jmst.2021.03.017

[42] Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. High- Crystalline g-C3N4 Photocatalysts: Synthesis, Structure Modulation, and H2-Evolution Application. Chin. J. Catal. 2023, 52, 127–143. https://doi.org/10.1016/S1872-2067(23)64491-2

[43] Li, Y.; Ren, Z.; He, Z.; Ouyang, P.; Duan, Y.; Zhang, W.; Lv, K.; Dong, F. Crystallinity-Defect Matching Relationship of g-C3N4: Experimental and Theoretical Perspectives. Green En. Environ. 2024, 9, 623–658. https://doi.org/10.1016/j.gee.2023.02.012

[44] Li, H.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. Crystalline Carbon Nitrides for Photocatalysis. EES. Catal. 2024, 2, 411–447. https://doi.org/10.1039/D3EY00302G

[45] Pu, W.; Zhou, Y.; Yang, L.; Gong, H.; Li, Y.; Yang, Q.; Zhang,D. High-Efficiency Crystalline Carbon Nitride Photocatalysts: Status and Perspectives. Nano Res. 2024, 17, 7840–7863. https://doi.org/10.1007/s12274-024-6818-83               ... 3    4

[46] Zhang, Z.; Leinenweber, K.; Bauer, V.; Garvie, L. A. J.; McMillan, P. F.; Wolf, G. H. High-Pressure Bulk Synthesis of Crystalline C6N9H .HCl: A Novel C N  Graphitic Derivative. J. Am. Chem. Soc. 2001, 123, 7788–7796. https://doi.org/10.1021/ja0103849

[47] Kroke, E.; Schwarz, M. Novel Group 14 Nitrides. Coord. Chem. Rev. 2004, 248, 493–532. https://doi.org/10.1016/j.ccr.2004.02.001

[48] Horvath-Bordon, E.; Kroke, E.; Svobod, I.; Fuess, H.; Riedel, R. Potassium Melonate, K3[C6N7(NCN)3]·5H2O, and its Potential Use for the Synthesis of Graphite-Like C3N4 Materials. New J. Chem. 2005, 29, 693–699. https://doi.org/10.1039/B416390G

[49] Sakata, Y.; Yoshimoto, K.; Kawaguchi, K.; Imamura, H.; Higashimoto S. Preparation of a Semiconductive Compound Obtained by the Pyrolysis of Urea under N2 and the Photocatalytic Property under Visible Light Irradiation. Catal. Today 2011, 161, 41–45. https://doi.org/10.1016/j.cattod.2010.09.029

[50] Long B.; Lin J.; Wang, X. Thermally-Induced Desulfurization and Conversion of Guanidine Thiocyanate into Graphitic Carbon Nitride Catalysts for Hydrogen Photosynthesis. J. Mater. Chem. A. 2014, 2, 2942–2951. https://doi.org/10.1039/C3TA14339B

[51] Zhang, H.; Yu, A. Photophysics and Photocatalysis of Carbon Nitride Synthesized at Different Temperatures. J. Phys. Chem. C 2014, 118, 11628–11635. https://doi.org/10.1021/jp503477x

[52] Wang, C.; Xiao, H.; Lu, Y.; Lv, J.; Yuan, Z.; Cheng, J. Regulation of Polymerization Kinetics to Improve Crystallinity of Carbon Nitride for Photocatalytic Eactions. ChemSusChem. 2023, 16, e202300361. https://doi.org/10.1002/cssc.202300361

[53] Iqbal, W.; Qiu, B.; Zhu, Q.; Xing, M.; Zhang, J. Self-Modified Breaking Hydrogen Bonds to Highly Crystalline Graphitic Carbon Nitrides Nanosheets for Drastically Enhanced Hydrogen Production. Appl. Catal. B 2018, 232, 306–313.https://doi.org/10.1016/j.apcatb.2018.03.072

[54] Cheng, J.; Hu, Z.; Lv, K.; Wu, X.; Li, Q.; Li, Y.; Li, X.; Sun, J.Drastic Promoting the Visible Photoreactivity of Layered Carbon Nitride by Polymerization of Dicyandiamide at High Pressure. Appl. Catal. B 2018, 232, 330–339.https://doi.org/10.1016/j.apcatb.2018.03.066

[55] Yuan, Y. P.; Yin, L. S.; Cao, S. W.; Gu, L. N.; Xu, G. S.; Du, P.;Chai, H., Liao, Y. S.; Xue, C. Microwave-Assisted Heating Synthesis: A General and Rapid Strategy for Large-Scale Production of Highly Crystalline g-C3N4 with Enhanced Photocatalytic H2 Production.Green Chem. 2014, 16, 4663–4668.https://doi.org/10.1039/C4GC01517G

[56] Guo, Y.; Li, J.; Yuan, Y.; Li, L.; Zhang, M.; Zhou, C.; Lin, Z. A. Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation. Angew. Chem. 2016, 128, 14913–14917. https://doi.org/10.1002/ange.201608453

[57] Li, X.-H.; Zhang, J.; Chen, X.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion. Chem. Mater. 2011, 23, 4344-4348. https://doi.org/10.1021/cm201688v

[58] Xing, W.; Tu, W.; Han, Z.; Hu, Y.; Meng, Q.; Chen G. Template-Induced High-Crystalline g-C3N4 Nanosheets for Enhanced Photocatalytic H2 Evolution. ACS En. Lett. 2018, 3, 514-519. https://doi.org/10.1021/acsenergylett.7b01328

[59] Bhunia, M. K.; Melissen, S.; Parida, M. R.; Pradip Sarawade, P.; Basset, J.-M.; Anjum, D. H.; Mohammed, O. F.; Sautet, P.; Tangui Le Bahers, T. L.; Takanabe, K. Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity. Chem. Mater. 2015, 27, 8237–8247.https://doi.org/10.1021/acs.chemmater.5b02974

[60] Qiu, C.; Xu, Y.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y.; Liu, C.; Yu, L.; Chen, W.; et al. Highly Crystalline K-Intercalated Polymeric Carbon Nitride for Visible-Light Photocatalytic Alkenes and Alkynes Deuterations. Adv. Sci. 2019, 6, 1801403. https://doi.org/10.1002/advs.201801403

[61] Xu, Y.; He, X.; Zhong, H.; Singh, D. J.; Zhang, L.; Wang, R. Solid Salt Confinement Effect: An Effective Strategy to Fabricate High Crystalline Polymer Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution. Appl. Cat. B 2019, 246, 349–355. https://doi.org/10.1016/j.apcatb.2019.01.069

[62] Wang, W.; Shu, Z.; Zhou, J.; Meng, D. Alkali-Assisted Deep- Deamination to Improve the Crystallinity of poly(Heptazine imide) for Boosted Photocatalytic H2 Evolution. Separ. Purif. Technol. 2023, 318, 124027. https://doi.org/10.1016/j.seppur.2023.124027

[63] Wang, W.; Shu, Z.; Zhou, J.; Meng, D.; Zhao, Z.; Li, T. Facile Synthesis and Microstructure Modulation of Crystalline Polymeric Carbon Nitride for Highly Boosted Photocatalytic Hydrogen Evolution. J. Mater. Chem. A 2020, 8, 6785–6794. https://doi.org/10.1039/D0TA01584A

[64] Wu, X.; Ma, H.; Zhong, W.; Fan, J.; Yu, H. Porous Crystalline g- C3N4: Bifunctional NaHCO3 Template-Mediated Synthesis and Improved Photocatalytic H2 Evolution Rate. Appl. Catal. B 2020, 271, 118899. https://doi.org/10.1016/j.apcatb.2020.118899

[65] Wu X.; Ma H.; Wang K.; Wang, J.; Wang, G.; Yu, H. High- Yield and Crystalline Graphitic Carbon Nitride Photocatalyst: One- Step Sodium Acetate-Mediated Synthesis and Improved Hydrogen- Evolution Performance. J. Colloid and Interface Sci. 2022, 633, 817– 827. https://doi.org/10.1016/j.jcis.2022.11.143

[66] Xia, P.; Antonietti, M.; Zhu, B.; Heil, T.; Yu, J.; Cao, S. Designing Defective Crystalline Carbon Nitride to Enable Selective CO2 Photoreduction in the Gas Phase. Adv. Funct. Mater. 2019, 29, 1900093. https://doi.org/10.1002/adfm.201900093

[67] Bojdys, M. J.; Muller, J. O.; Antonietti, M.; Thomas, A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chem. 2008, 14, 8177–8182.https://doi.org/10.1002/chem.200800190

[68] Chen, X.; Li, X.; Wu, J.; Fang, C.; Ding, J.; Wan, H.; Guan G. Boosting Photocatalytic H2 Evolution by Ingenious Construction of Isotype Heptazine/Triazine Based Porous Carbon Nitride Heterojunction. Separ. Purif. Technol. 2022, 297, 121490. https://doi.org/10.1016/j.seppur.2022.121490

[69] Wirnhier, E.; Doblinger, M.; Gunzelmann, D.; Senker, J.; Lotsch, B. V.; Schnicket, W. Poly(Triazineimide) with Intercalation of Lithium and Chloride Ions [(C3N3)2(NHxLi1x)3·LiCl]: A Crystalline 2D Carbon Nitride Network. Chem. 2011, 17, 3213–3221. https://doi.org/10.1002/chem.20100246

[70] Schwinghammer, R.; Tuffy, B.; Mesch, M. B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B. V. Triazine-Based Carbon Nitrides for Visible-Light-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2013, 52, 2435–2439. https://doi.org/10.1002/anie.201206817

[71] Ham, Y.; Maeda, K.; Cha, D.; Takanabe, K.; Domen, K. Synthesis and Photocatalytic Activity of poly (triazine imide). Chem. Asian J. 2013, 8, 218–224. https://doi.org/10.1002/asia.201200781

[72] He, F.; Wang, M.; Luo, L.; Wang, Z.; Peng, S.; Li, Y. Directional Modulation of Triazine and Heptazine Based Carbon Nitride for Efficient Photocatalytic H2 Evolution. Appl. Surf. Sci. 2021, 562, 150103. https://doi.org/10.1016/j.apsusc.2021.150103

[73] Li, Y.; Zhang, D.; Fan, J.; Xiang, Q. Highly Crystalline Carbon Nitride Hollow Spheres with Enhanced Photocatalytic Performance. Chin. J. Catal. 2021, 42, 627–636. https://doi.org/10.1016/S1872-2067(20)63684-1

[74] An, W.; Zhi, X.; Zhai, B.; Niu, P.; Wang, S.; Li, L. Crystallinity Improvement of poly(Heptazine imide) for High Photocatalytic Hydrogen Evolution. Scripta Mater. 2022, 221, 114992. https://doi.org/10.1016/j.scriptamat.2022.114992

[75] Wang, S.; He, F.; Lu, Y.; Wu, Y.; Zhang, Y.; Dong, P.; Liu, X.; Zhao, C.; Wang, S.; Wang, D.; et al. Enhancing Photocatalytic Hydrogen Production of Carbon Nitride: Dominant Advantage of Crystallinity over Mass Transfer. J. Colloid and Interface Sci. 2024, 654 A, 317–326. https://doi.org/10.1016/j.jcis.2023.10.046

[76] Yu, Z.; Yue, X.; Fan, J.; Xiang, Q. Crystalline Intramolecular Ternary Carbon Nitride Homojunction for Photocatalytic Hydrogen Evolution. ACS Catal. 2022, 12, 6345–6358. https://doi.org/10.1021/acscatal.2c01563

[77] Wu, Z.; Gao, H.; Yan, S.; Zou Z. Synthesis of Carbon Black/Carbon Nitride Intercalation Compound Composite for Efficient Hydrogen Production. Dalton Trans. 2014, 43, 12013–12017. https://doi.org/10.1039/C4DT00256C

[78] Jin, A.; Jia, Y.; Chen, C.; Liu, X.; Jiang, J.; Chen, X.; Zhang, F. Efficient Photocatalytic Hydrogen Evolution on Band Structure Tuned Polytriazine/Heptazine Based Carbon Nitride Heterojunctions with Ordered Needle-Like Morphology Achieved by an in situ Molten Salt Method. J. Phys. Chem. C 2017, 121, 21497–21509.https://doi.org/10.1021/acs.jpcc.7b07243

[79] Zhao, Z.; Shu, Z.; Zhou, J.; Li, T.; Yan, F.; Wang, W.; Xu, L.; Shi, L.; Liao, Z. One-Step Fabrication of Crystalline Carbon Nitride with Tunable in-Plane/Interlayer Crystallinity for Enhanced Photocatalytic Hydrogen Evolution. J. Alloys and Compounds 2022, 910, 164828. https://doi.org/10.1016/j.jallcom.2022.164828

[80] Liu, H.; Chen, D.; Wang, Z.; Jing, H.; Zhang, R. Microwave- Assisted Molten-Salt Rapid Synthesis of Isotype Triazine-/Heptazine Based g-C3N4 Heterojunctions with Highly Enhanced Photocatalytic Hydrogen Evolution Performance. Appl. Catal. B 2017, 203, 300–313. https://doi.org/10.1016/j.apcatb.2016.10.014

[81] Liu, J.; Fang, W.; Wei, Z.; Qin, Z.; Jiang, Z.; Shangguan, W. Efficient Photocatalytic Hydrogen Evolution on N-Deficient g-C3N4 Achieved by a Molten Salt Post-Treatment Approach. Appl. Catal. B 2018, 238, 465–470. https://doi.org/10.1016/j.apcatb.2018.07.021

[82] Chen, C. C.; Tsai, D. L.; Liu, H. T.; Wu J. J. Carbon Vacancy- Modified Carbon Nitride Allotropic Composite for Solar Hydrogen Generation Coupled with Selective Oxidation of 5- Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2023, 11, 6435–6444. https://doi.org/10.1021/acssuschemeng.3c00363

[83] Ren, W.; Cheng, J.; Ou, H.; Huang, C.; Titirici, M.-M.; Wang, X. Enhancing Visible-Light Hydrogen Evolution Performance of Crystalline Carbon Nitride by Defect Engineering. ChemSusChem2019, 12, 3257–3262. https://doi.org/10.1002/cssc.201901011

[84] Deng, P.; Liu, Y.; Shi, L.; Cui, L.; Si, W.; Yao, L. Enhanced Visible-Light H2 Evolution Performance of Nitrogen Vacancy Carbon Nitride by Improving Crystallinity. Optic Mater. 2021, 120, 111407. https://doi.org/10.1016/j.optmat.2021.111407

[85] Shao, Y.; Hao, X.; Lu, S.; Jin, Z. Molten Salt-Assisted Synthesis of Nitrogen-Vacancy Crystalline Graphitic Carbon Nitride with Tunable Band Structures for Efficient Photocatalytic Overall Water Splitting. Chem. Eng. J. 2023, 454 Part 1, 140123. https://doi.org/10.1016/j.cej.2022.140123

[86] Deng, H.; Jia, Y.; Wang, W.; Zhong, S.; Hao, R.; Fan, L.; Liu, X. Defect and Crystallinity-Mediated Charge Separation in Carbon Nitride for Synergistically Boosted Solar-Driven Hydrogen Evolution. ACS Sustain. Chem. Eng. 2023, 11, 13736–13746.https://doi.org/10.1021/acssuschemeng.3c03772

[87] Wang, Y. X.; Rao, L.; Wang, P. F.; Guo, Y.; Shi, Z. Y.; Guo, X.; Zhang, L. X. Synthesis of Nitrogen Vacancies g-C3N4 with Increased Crystallinity under the Controlling of Oxalyl Dihydrazide: Visible- Light-Driven Photocatalytic Activity. Appl. Surf. Sci. 2020, 505, 144576. https://doi.org/10.1016/j.apsusc.2019.144576

[88] Wang, W.; Kou, X.; Li, T.; Zhao, R.; Su, Y. Tunable Heptazine/Triazine Feature of Nitrogen Deficient Graphitic Carbon Nitride for Electronic Modulation and Boosting Photocatalytic Hydrogen Evolution. J. Photochem. Photobiol. A 2023, 435, 114308. https://doi.org/10.1016/j.jphotochem.2022.114308

[89] Chen, L.; Ning, S.; Liang, R.; Xia, Y.; Huang, R.; Yan, G.; Wang, X. Potassium Doped and Nitrogen Defect Modified Graphitic Carbon Nitride for Boosted Photocatalytic Hydrogen Production. Int. J. Hydrogen En. 2022, 47, 14044–14052.https://doi.org/10.1016/j.ijhydene.2022.02.147

[90] Yu, H.; Ma, H.; Wu, X.; Wang, X.; Fan, J.; Yu, J. One-Step Realization of Crystallization and Cyano-Group Generation for g- C3N4 Photocatalysts with Improved H2 Production. Sol. RRL 2020, 5, 2000372. https://doi.org/10.1002/solr.202000372

[91] Yuan, J.; X. Liu, X.; Tang, Y.; Zeng, Y.; Wang, L.; Zhang, S.; Cai, T.; Liu, Y.; Luo, S.; Pei, Y.; et al. Positioning Cyanamide Defects in g-C3N4: Engineering Energy Levels and Active Sites for Superior Photocatalytic Hydrogen Evolution. Appl. Catal. B 2018, 237, 24–31. https://doi.org/10.1016/j.apcatb.2018.05.064

[92] Deng, P.; Shi, L.; Wang, H.; Qi, W. One-Step Preparation of Novel K+ and Cyano-Group co-Doped Crystalline Polymeric Carbon Nitride with Highly Efficient H2 Evolution. Colloids and Surfaces A 2020, 601, 125023. https://doi.org/10.1016/j.colsurfa.2020.125023

[93] Zhao, B.; Gao, D.; Liu, Y.; Fan, J.; Yu, H. Cyano Group- Enriched Crystalline Graphitic Carbon Nitride Photocatalyst: Ethyl Acetate-Induced Improved Ordered Structure and Efficient Hydrogen- Evolution Activity. J. Colloid Interface Sci. 2022, 608 Part 2, 1268–1277. https://doi.org/10.1016/j.jcis.2021.10.108

[94] Yang, S.; Zhang, H.; Wang, J.; Xiang, J.; Fu, Z.; Wang, Y.; Li, Z.; Xie, H.; Tang, S.; Li, Y. Spatially Restricted Strategy to Construct Crystalline Carbon Nitride Nanosheet Assists Exciton Dissociation to Enhance Photocatalytic Hydrogen Evolution Activity. Appl. Surf. Sci. 2023, 616, 156523. https://doi.org/10.1016/j.apsusc.2023.156523

 [95] Yuan, J.; Tang, Y.; Yi, X.; Liu, C.; Li, C.; Zeng, Y.; Luo, S.Crystallization, Cyanamide Defect and Ion Induction of Carbon Nitride: Exciton Polarization Dissociation, Charge Transfer and Surface Electron Density for Enhanced Hydrogen Evolution. Appl. Catal. B 2019, 251, 206–212.https://doi.org/10.1016/j.apcatb.2019.03.069

[96] Teixeira, I. F.; Tarakina, N. V.; Silva, I. F.; López-Salas, N.; Savateev, A.; Antonietti, M. Overcoming Electron Transfer Efficiency Bottlenecks for Hydrogen Production in Highly Crystalline Carbon Nitride-Based Materials. Adv. Sustain. Syst. 2022, 6, 2100429. https://doi.org/10.1002/adsu.202100429

[97] Xu, C.; Liu, H.; Wang, D.; Li, D.; Zhang, Y.; Liu, X.; Huang, J.; Wu, S.; Fan, D.; Liu, H.; et al. Molten-Salt Assisted Synthesis of Polymeric Carbon Nitride-Based Photocatalyst for Enhanced Photocatalytic Activity under Green Light Irradiation. Appl. Catal. B 2023, 334, 122835. https://doi.org/10.1016/j.apcatb.2023.122835  

[98] Chen, Z.; Savateev, A.; Pronkin, S.; Papaefthimiou, V.; Wolff, C.; Willinger, M. G.; Willinger, E.; Neher, D.; Antonietti, M.; Dontsova, D. "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable poly(Heptazine imide) Salts. Adv. Mater. 2017, 29, 1700555. https://doi.org/10.1002/adma.201700555

[99] Zhang, G.; Xu, Y.; Yan, D.; He, C.; Li, Y.; Ren, X.; Zhang, P.; Mi, H. Construction of K+ Ion Gradient in Crystalline Carbon Nitride to Accelerate Exciton Dissociation and Charge Separation for Visible Light H2 Production. ACS Catal. 2021, 11, 6995–7005. https://doi.org/10.1021/acscatal.1c00739

[100] Lin, L.; Ren, W.; Wang, C.; Asiri, A. M.; Zhang, J.; Wang, X. Crystalline Carbon Nitride Semiconductors Prepared at Different Temperatures for Photocatalytic Hydrogen Production. Appl. Cat. B 2018, 231, 234–241. https://doi.org/10.1016/j.apcatb.2018.03.009

[101] Zeng, W.; Dong, Y.; Ye, X.; Zhang, Z.; Zhang, T.; Guan, X.; Guo, L. Crystalline Carbon Nitride with in-Plane Built-in Electric Field Accelerates Carrier Separation for Excellent Photocatalytic Hydrogen Evolution. Chin. Chem. Lett. 2024, 35, 109252. https://doi.org/10.1016/j.cclet.2023.109252

[102] Xu, Y.; Shi, W.; Zhang, Y.; Tu, Z.; Sun, B.; Wang, Z.; Wang, X.; Liu, Z.; Wang, W. Realigning the Melon Chains in Carbon Nitride by Rubidium Ions to Promote Photo-Reductive Activities for Hydrogen Evolution and Environmental Remediation. J. Hazard.Mater. 2023, 453, 131435. https://doi.org/10.1016/j.jhazmat.2023.131435

[103] Xu, W.; An, X.; Zhang, Q.; Li, Z.; Zhang, Q.; Yao, Z.; Wang, X.; Wang, S.; Zheng, J.; Zhang, J.; et al. Cesium Salts as Mild Chemical Scissors to Trim Carbon Nitride for Photocatalytic H2 Evolution. ACS Sustain. Chem. Eng. 2019, 7, 1235112357. https://doi.org/10.1021/acssuschemeng.9b01717

[104] Liao, Z.; Li, C.; Shu, Z.; Zhou, J.; Li, T.; Wang, W.; Zhao, Z.; Xu, L.; Shi, L.; Feng, L. K–Na co-Doping in Crystalline Polymeric Carbon Nitride for Highly Improved Photocatalytic Hydrogen Evolution. Int. J. Hydrogen En. 2021, 46, 26318–26328. https://doi.org/10.1016/j.ijhydene.2021.05.138

[105] Gao, H.; Yan, S.; Wang, J.; Huang, Y. A.; Wang, P.; Li, Z.; Zou, Z. Towards Efficient Solar Hydrogen Production by Intercalated Carbon Nitride Photocatalyst. Phys. Chem. Chem. Phys. 2013. 15, 18077–18084. https://doi.org/10.1039/C3CP53774A

[106] Zhang, G.; Xu, Y.; Rauf, M.; Zhu, J.; Li, Y.; He, C.; Ren, X.; Zhang, P.; Mi, H. Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible And Near- Infrared Light Photoactivity. Adv. Sci. 2022, 9, 2201677. https://doi.org/10.1002/advs.202201677

[107] Sahoo, S. K.; Teixeira, I. F.; Naik, A.; Heske, J.; Cruz, D.; Antonietti, M.; Savateev, A.; Kühne, T. D. Photocatalytic Water Splitting Reaction Catalyzed by Ion-Exchanged Salts of Potassium poly(Heptazine imide) 2D Materials. J. Phys. Chem. C. 2021, 125, 13749–13758. https://doi.org/10.1021/acs.jpcc.1c03947

[108] Grodzyuk G. Ya.; Koryakina K. V.; Shvalagin V. V.; Korzhak, G.V.; Kuchmiy, S.Y. Photocatalytic Evolution of Hydrogen from Alcohol–Aqueous Solutions Using Nanocrystalline Carbon Nitride Modified with Magnesium Chloride under the Visible Light Irradiation. Theor. Exp. Chem. 2022, 58, 198–204. https://doi.org/10.1007/s11237-022-09736-3

[109] Wang, Y.; Zhou, X.; Xu, W.; Sun, Y.; Wang, T.; Zhang, Y.; Dong, J.; Hou, W.; Wu, N.; Wu, L.; et al. Zn-Doped Tri-S-Triazine Crystalline Carbon Nitrides for Efficient Hydrogen Evolution Photocatalysis. Appl. Catal. A 2019, 582, 117118. https://doi.org/10.1016/j.apcata.2019.117118

[110] Wu, Y.; Xu, W.; W, N.; Wang, Z.; Wang, Y.; Zhang, Y.; Zhong, W.; Cai, H. L.; Wu, X. S. Bridging and Bonding: Zinc and Potassium co-Assisted Crystalline g-C3N4 for Significant Highly Efficient upon Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2021, 542, 148620. https://doi.org/10.1016/j.apsusc.2020.148620

[111] Shi, W.; Cao, L.; Shi, Y.; Zhong, W.; Chen, Z.; Wei, Y.; Guo, F.; Chen, L.; Du, X. Boosted Built-in Electric Field and Active Sites Based on Ni-Doped Heptazine/Triazine Crystalline Carbon Nitride for Achieving High-Efficient Photocatalytic H2 Evolution. J. Mol. Str.2023, 1280, 135076. https://doi.org/10.1016/j.molstruc.2023.135076

[112] Wang Y.; Xie D.; Wang G.; Wu, Y.; Shi, R.; Zhou, C.; Meng, X.; Zhang, T. Single-Atomic Co-N4-O Site Boosting Exciton Dissociation and Hole Extraction for Improved Photocatalytic Hydrogen Evolution in Crystalline Carbon Nitride. Nano En. 2022, 104, Part A, 107938. https://doi.org/10.1016/j.nanoen.2022.107938

[113] Xu, T.; Xia, Z.; Li, H.; Niu, P.; Wang, S.; Li, L. Constructing Crystalline g-C3N4/g-C3N4xSx Isotype Heterostructure for Efficient Photocatalytic and Piezocatalytic Performances. En. Environ. Mater. 2023, 6, e12306. https://doi.org/10.1002/eem2.12306

[114] Ovcharov, M. L.; Glukhova, P. I.; Korzhak, G. V.; Kutsenko, O. S.; Stara, T. R.; Kuchmiy, S. Ya. Influence of Sulfur Doping of Crys- talline Carbon Nitride on Photocatalytic Hydrogen Evolution from Alcohol–Aqueous Solutions under Visible Light. Theor. Exp. Chem. 2024, 59, 397–405. https://doi.org/10.1007/s11237-024-09798-5

[115] Stara, T.; Kutsenko, A.; Korzhak, H.; Ovcharov, M.; Kuchmiy, S. Photocatalytic Activity of Boron-Doped Bulk and Crystalline Graphitic Carbon Nitride in Visible Light-Driven Hydrogen Production. Chem. Chem. Technol. 2024, 18, 449–457. https://doi.org/10.23939/chcht18.04.449

[116] Wang, Y.; Zhou, J.; Wang, F.; Xie, Y.; Liu, S.; Ao, Z.; Li, C. Hydrogen Generation from Photocatalytic Treatment of Wastewater Containing Pharmaceuticals and Personal Care Products by Oxygen- Doped Crystalline Carbon Nitride. Separ. Purif. Technol. 2022, 296, 121425. https://doi.org/10.1016/j.seppur.2022.121425

[117] Li, J.; Liu, X.; Che, H.; Liu, C.; Li, C. Facile Construction of O- Doped Crystalline/Non-Crystalline g-C3N4 Embedded Nano- Homojunction for Efficiently Photocatalytic H2 Evolution. Carbon 2021, 172, 602–612. https://doi.org/10.1016/j.carbon.2020.10.051

[118] Zhang, G.; Xu, Y.; He, C.; Zhang, P.; Mi, H. Oxygen-Doped Crystalline Carbon Nitride with Greatly Extended Visible-Light- Responsive Range for Photocatalytic H2 Generation. Appl. Catal. B 2021, 283, 119636. https://doi.org/10.1016/j.apcatb.2020.119636

[119] Xu, Y.; Fan, M.; Yang, W.; Xiao, Y.; Zeng, L.; Wu, X.; Xu, Q.; Su, C.; He, Q. Homogeneous Carbon/Potassium‐Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Near-Infrared Photocatalytic H2 Production. Adv. Mater. 2021, 33, 2101455. https://doi.org/10.1002/adma.202101455

[120] Cui, Y.; Li, X.; Yang, C.; Xiao, B.; Xu, H. K–I co-Doped Crystalline Carbon Nitride with Outstanding Visible Light Photocatalytic Activity for H2 Evolution. Int. J. Hydrogen En. 2022, 47, 12569–12581. https://doi.org/10.1016/j.ijhydene.2022.02.005