Heavy crude oils from the fields of three Ukrainian regions (Lviv, Sumy, and Poltava regions) have been studied and characterized. For dewatering these oils, a number of compositions using Dissolvan demulsifiers have been developed and investigated. The synergistic effect of oxyethylated and oxypropylated block polymers was confirmed. The crude oils were diluted with heavy gas condensate to reduce viscosity and increase dewatering efficiency. For each oil under study, the optimal compositions of demulsifiers were determined. Four compositions that showed the highest demulsifying ability (90-94.5%) when working with the studied oils were selected for further research.
[1] Abdulredha, M. M.; Aslina, H. S.; Luqman, C. A. Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques. Arab. J. Chem. 2020, 13, 3403−3428. https://doi.org/10.1016/j.arabjc.2018.11.014
[2] Faizullayev, S.; Adilbekova, A.; Kujawski, W.; Mirzaeian, M. Recent Demulsification Methods of Crude Oil Emulsions – Brief Review. J. Petrol. Sci. Eng. 2022, 215, Part B, 110643. https://doi.org/10.1016/j.petrol.2022.110643
[3] Omelchuk, О. V.; Zagnitko, V. M.; Kurylo M. M. Poshuky ta Rozvidka Rodovyshch Korysnykh Kopalyn; Navchalno-naukovyi instytut “Instytut Geologii”, Kyiv 2017.
[4] Lazaruk, Ya. G. Peredkarpatska Naftogazonosna Oblast. In Encyclopedia Suchasnoi Ukrainy; NAN Ukrainy, Kyiv 2023. https://esu.com.ua/article-880387
[5] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern region of Ukraine. Chem. Chem. Technol. 2021, 15, 423−431. https://doi.org/10.23939/chcht15.03.423
[6] Topilnytskyy, P.; Shyshchak, M.; Skorokhoda, V.; Torskyi, V. Demulsification Methods for Heavy Crude Oil Emulsions. A Review. Chem. Chem. Technol., 2024, 18, 270–283. https://doi.org/10.23939/chcht18.02.270
[7] Fajun, Z.; Zhexi, T.; Zhongqi, Y.; Hongzhi, S.; Yanping, W.; Yufei, Z. Research Status and Analysis of Stabilization Mechanisms and Demulsification Methods of Heavy Oil Emulsions. Energ. Sci. Eng. 2020, 8, 4158−4177. https://doi.org/10.1002/ese3.814
[8] Acosta, M.; Reyes, L.; Cruz, J.C.; Pradilla, D. Demulsification of Colombian Heavy Crude Oil (W/O) Emulsions: Insights into the Instability Mechanisms, Chemical Structure, and Performance of Different Commercial Demulsifiers. Energy Fuels 2020, 34, 5665−5678. https://doi.org/10.1021/acs.energyfuels.0c00313
[9] Matiyev, K. I.; Agazade, A. D.; Alsafarova, M.; Akberova, A. F. Selection of an Effective Demulsifier for an Oil-Water Emulsion Breaking and Study to Determine Compatibility with a Basic Demulsifier. SOCAR Proceed. 2019, 1, 57−61. https://doi.org/10.5510/OGP20180100343
[10] Gurbanov, H. R.; Gasimzade A. V. Research of the Impact of New Compositions on the Decomposition of Stable Water-Oil Emulsions of Heavy Oils. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 6, 19−28. https://doi.org/10.32434/0321-4095-2022-145-6-19-28
[11] Kumar, S.; Rajput, V. S.; Mahto, V. Experimental Studies on Demulsification of Heavy Crude Oil-in-Water Emulsions by Chemicals, Heating, and Centrifuging. SPE Prod. Oper. 2021, 36, 375–386. https://doi.org/10.2118/204452-PA
[12] Rondón M.; Pereira J. C.; Bouriat, P.; Graciaa, A.; Lachaise, J.; Salager, J.-L. Energy Fuels 2008, 22, 702−707. https://doi.org/10.1021/ef7003877
[13] Narro, G. M.; Vázquez C. P; González M. O. M. Viscosity Reduction of Heavy Crude Oil by Dilution with Hydrocarbons Obtained via Chemical Recycling of Plastic Wastes. Petrol. Sci. Technol. 2019, 37, 1347−1354. https://doi.org/10.1080/10916466.2019.1584634
[14] Zhang, X.; He, C.; Zhou, J.; Tian, Y.; He, L.; Sui, H.; Li, X. Demulsification of Water-in-Heavy Oil Emulsions by Oxygen- Enriched Non-Ionic Demulsifier: Synthesis, Characterization and Mechanisms. Fuel 2023, 338, 127274. https://doi.org/10.1016/j.fuel.2022.127274
[15] Gurbanov, G. R.; Nurullayev, V. Kh.; Gasimzade, A. V. The Use of New Effective Compositions for Decomposing a Stable Water-Oil Emulsion. Nafta-Gaz 2024, 2, 102–108. https://doi.org/10.18668/NG.2024.02.05
[16] Rojas, D. Z. J.; Gallardo-Rivas, N. V.; Mendoza-de la Cruz, J. L.; Salazar-Cruz, B. A.; Páramo-García, U. Effect of Non-Ionic Surfactants on the Transport Properties of an Emulsified Heavy Oil. Fuel 2021, 300, 120934. https://doi.org/10.1016/j.fuel.2021.120934
[17] Gonçalves, J. M. S.; Santos, D.; Serpa, F.; Franceschi, E.; Dariva, C.; Borges, G. R. Evaluation of Interfacial Properties for Brine/Oil Systems. SPE Brazil Flow Assurance Technology Congress, Rio de Janeiro, Brazil, November 15–18 2022. https://spebrazilfatc.com.br/wp-content/uploads/2022/11/085- Goncalves-EVALUATION-OF-INTERFACIAL-PROPERTIES-FOR-BRINEOIL-SYSTEMS-final.pdf
[18] Sattorov, B. A. M.; Yamaletdinova, A.; Bokieva, S. Analysis of Efficiency of Chemical Reagents Used in Destruction of Oil Emulses in Local Deposits. IOP Conf. Ser.: Earth Environ. Sci. 2022, 1112, 012009. https://doi.org/10.1088/1755-1315/1112/1/012009
[19] Abdulkadir, M. Comparative Analysis of the Effect of Demulsifiers in the Treatment of Crude Oil Emulsion. ARPN J. Eng. Appl. Sci. 2010, 5, 67−73.
[20] Fuentes, J. V.; Zamora, E. B.; Li, Z.; Xu, Z.; Chakraborty, A.; Zavala, G.; Vázquez, F.; Flores, C. Alkylacrylic-Carboxyalkylacrylic Random Bipolymers as Demulsifiers for Heavy Crude Oils. Sep. Purif. Technol. 2021, 256, 117850. https://doi.org/10.1016/j.seppur.2020.117850
[21] Raya, S. A.; Saaid, I. B. M.; Abbas Ahmed, A.; Umar A. A. A critical Review of Development and Demulsification Mechanisms of Crude Oil Emulsion in the Petroleum Industry. J. Petrol. Explor. Prod. Technol. 2020, 10, 1711–1728. https://doi.org/10.1007/s13202-020-00830-7
[22] Wei, L.; Zhang, L.; Chao, M.; Jia, X.; Liu, C.; Shi, L. Synthesis and Study of a New Type of Nonanionic Demulsifier for Chemical Flooding Emulsion Demulsification. ACS Omega 2021, 6, 17709−17719. https://doi.org/10.1021/acsomega.1c02352
[23] Yuan, S.; Wang, Z.; Yuan, S. Understanding the Chemical Demulsification Mechanism of Oil/Water Emulsion by Polyether Polymers. Ind. Eng. Chem. Res. 2024, 63, 12680–12687. https://doi.org/10.1021/acs.iecr.4c01829