The availability and possibility of using various alternative types of raw materials for carbon black production have been analyzed. The quality of raw materials was evaluated according to the aromaticity value, correlation index, carbon content, and hydrogen content. Composite mixtures were created and tested under industrial conditions. Two programs for calculating the theoretical yield of carbon black by balance and thermochemical methods have been developed and tested. An evaluation of the carbon black cost was carried out under the conditions of using the residue of tire processing - pyrolysis oil - as a fuel.
[1] Ge-Zhang, S.; Yang, H.; Mu, H. Interfacial Solar Steam Generator by MWCNTs/Carbon Black Nanoparticles Coated Wood. Alexandria Eng. J. 2023, 63, 1–10. https://doi.org/10.1016/j.aej.2022.08.002
[2] George, J.; Poulose, A.M.; Chandran, A.; Somashekar, A.A. Influence of Plasticizer on the Dielectric Properties of Polypropylene/Carbon Black Composites. Mater. Today Proc. 2023, 113391. https://doi.org/10.1016/j.matpr.2023.03.297
[3] Vélez, P.; Luque, G.L.; Barraco, D.E.; Franco, A.A.; Leiva, Е.P.M. Pore Size Distribution of Carbon Black: An Approach from a Coarse-Grained Potential. Comput. Mater. Sci 2022, 209,111409. https://doi.org/10.1016/j.commatsci.2022.111409
[4] Zhang, G.; Jiang, Y.; Wang, S.; Zhang, Y. Influence of a Novel Coupling Agent on the Performance of Recovered Carbon Black Filled Natural Rubber. Composites, Part B 2023, 255, 110614. https://doi.org/10.1016/j.compositesb.2023.110614
[5] Kouchachvili, L.; Hataley, B.; Geddis, P.; Chen, S.; McCready, A.; Zhuang, Q.; Clements, B.; Entchev, Е. Modification of Carbon Black Fuel to Improve the Performance of a Direct Carbon Fuel Cell. Int. J. Hydrogen Energy 2023, 52, 1153–1160. https://doi.org/10.1016/j.ijhydene.2023.01.074
[6] Tuul, K.; Palm, R.; Aruväli, J.; Lust, E. Dehydrogenation and Low-Pressure Hydrogenation Properties of NaAlH4 Confined in Mesoporous Carbon Black for Hydrogen Storage. Int. J. Hydrogen Energy 2023, 48, 19646–19656. https://doi.org/10.1016/j.ijhydene.2023.01.358
[7] Choi, G.B.; Kim, Y-A.; Hong, D.; Choi, Y.; Yeon, S-H.; Park, Y-K.; Lee, G-G.; Lee, H.; Jung, S-C. Carbon Black Produced by Plasma in Benzene Solution Applied as the Conductive Agent in Lithium Secondary Batteries. Carbon 2023, 205, 444–453. https://doi.org/10.1016/j.carbon.2023.01.042
[8] Ferreira, M.C.; Silva, L.S.; Bergamini, M.F.; Richter, E.M.; Muñoz, R.A.A. Using Nanostructured Carbon Black-Based Electrochemical (bio)Sensors for Pharmaceutical and Biomedical Analyses: A Comprehensive Review. J. Pharm. Biomed. Anal. 2023, 221, 115032. https://doi.org/10.1016/j.jpba.2022.115032
[9] Sun, P.; Wang. X.; Zhang. Y.; Chen. Y. Rational Construction of Hierarchical Nanocomposites by Growing Dense Polyaniline Nanoarrays on Carbon Black-Functionalized Carbon Nanofiber Backbone for Freestanding Supercapacitor Electrodes. J. Energy Storage 2023, 61, 106738. https://doi.org/10.1016/j.est.2023.106738
[10] Chiba, S.; Waki, M. Verification of the Radio Wave Absorption Effect in the Millimeter Wave Band of SWCNTs and Conventional Carbon-Based Materials. Appl. Sci. 2021, 11, 11490. https://doi.org/10.3390/app112311490
[11] Ruiz-Pereza, F.; Lopez-Estradab, S.M.; Tolentino- Hernandeza, R.V.; Caballero-Briones, F. Carbon-Based Radar Absorbing Materials: A Critical Review. J. Sci.: Adv. Mater. Devices 2022, 7, 100454. https://doi.org/10.1016/j.jsamd.2022.100454
[12] Elmaghraby, N.A.; Hassaan, M.A.; Zien, M.A.; Abedelrhim, E.M.; Ragab, S.; Yılmaz, M.; El Nemr, A. Fabrication Of Carbon Black Nanoparticles from Green Algae and Sugarcane Bagasse. Sci. Rep. 2024, 14, 5542. https://doi.org/10.1038/s41598-024-56157-4
[13] Shoaib, A.G.M.; El-Sikaily, A.; El Nemr, A.; Mohamed, A.A.; Hassan, A.A. Preparation and Characterization of Highly Surface Area Activated Carbons Followed Type IV from Marine Red Alga (Pterocladia capillacea) by Zinc Chloride Activation. Biomass Conv. Bioref. 2022, 12, 2253–2265. https://doi.org/10.1007/s13399-020-00760-8
[14] El Nemr, A.; Shoaib, A.G.M.; El Sikaily, A.; Ragab, S.; El- Deen Mohamed, A.; Hassan, A. Utilization of Green Alga Ulva lactuca for Sustainable Production of Meso-Micro Porous Nano Activated Carbon for Adsorption of Direct Red 23 Dye from Aquatic Environment. Carbon Lett. 2022, 32, 153–168. https://doi.org/10.1007/s42823-021-00262-1
[15] Gómez-Hernández, R.; Panecatl-Bernal, Y.; Méndez-Rojas, M.A. High Yield and Simple One-Step Production of Carbon Black Nanoparticles from Waste Tires. Heliyon 2019, 5, е02139. https://doi.org/10.1016/j.heliyon.2019.e02139
[16] Yerdauletov, M.S.; Nazarov, K.; Mukhametuly, B.; Yeleuov, M.A.; Daulbayev, C.; Abdulkarimova, R.; Yskakov, A.; Napolskiy, F.; Krivchenko, V. Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices. Molecules 2023, 28, 5818. https://doi.org/10.3390/molecules28155818
[17] Nadimpalli, N.K.V.; Buddhiraju, V.S.; Runkana, V. Modeling and Simulation of Carbon Black Synthesis in an Aerosol Flame Reactor. Adv. Powder Technol. 2011, 22, 141–149. https://doi.org/10.1016/j.apt.2010.12.015
[18] El Nemr, A.; Aboughaly, R.M.; El Sikaily, A.; Masoud, M.S.; Ramadan, M.S.; Ragab, S. Microporous Nano-Activated Carbon Type I Derived from Orange Peel and its Application for Cr (VI) Removal from Aquatic Environment. Biomass Convers. Biorefin. 2022, 12, 5125–5143. https://doi.org/10.1007/s13399-020-00995-5
[19] Kong, D.; Wang, S.; Shan, R.; Gu, J.; Yuan, H.; Chen, Y. Characteristics and Chemical Treatment of Carbon Black from Waste Tires Pyrolysis. J. Anal. Appl. Pyrolysis 2024, 178, 106419. https://doi.org/10.1016/j.jaap.2024.106419
[20] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Demchuk, Y.; Kukhar, O.; Korchak, B; Pochapska, I.; Zhytnetsky, I. Characteristics and Applications of Waste Tire Pyrolysis Products: a Review. Chem. Chem. Technol. 2024, 2, 244–257. https://doi.org/10.23939/chcht18.02.244
[21] Zamikula, K.; Tertyshna, O.; Tertyshny, O.; Topilnytskyy, P. Simulation of Change in Density and Viscosity of Crude Oil When Mixing. Chem. Chem. Technol. 2022, 3, 469–474. https://doi.org/10.23939/chcht16.03.469
[22] Tertyshna, O.; Royenko, K.; Martynenko, V.; Smesova, V.A.; Gyrenko, V.; Topilnytskyy, P. The Utilization of Asphalt-Resin- Paraffin Deposits as a Component of Raw Material for Visbreaking. Chem. Chem. Technol. 2016, 10, 361–366. https://doi.org/10.23939/chcht10.03.361