Укр Search formШукати User login Username * Password * Забули пароль? Аналіз і підбір композиційної сировини для виробництва технічного вуглецю

2025;
: cc. 564 - 571
1
Ukrainian State University of Science and Technology (ESI ‘Ukrainian State University of Chemical Technology’), Ukraine
2
Ukrainian State University of Science and Technology (ESI ‘Ukrainian State University of Chemical Technology’), Ukraine
3
Ukrainian State University of Science and Technology (ESI ‘Ukrainian State University of Chemical Technology’), Ukraine
4
Ukrainian State University of Science and Technology (ESI ‘Ukrainian State University of Chemical Technology’), Ukraine

Проаналізовано наявність і можливість використання різноманітних альтернативних видів сировини для виробництва технічного вуглецю. Здійснено оцінювання якості сировинних матеріалів за показником ароматичності, за індексом кореляції, вмістом вуглецю та водню. Створено й апробовано в промислових умовах композиційні суміші. Розроблено та перевірено дві програми розрахунку теоретичного виходу технічного вуглецю за балансовим і термохімічним методами. Проведено оцінювання собівартості технічного вуглецю в умовах використання як палива залишку переробки шин – піролізної оливи.

[1] Ge-Zhang, S.; Yang, H.; Mu, H. Interfacial Solar Steam Generator by MWCNTs/Carbon Black Nanoparticles Coated Wood. Alexandria Eng. J. 2023, 63, 1–10. https://doi.org/10.1016/j.aej.2022.08.002

[2] George, J.; Poulose, A.M.; Chandran, A.; Somashekar, A.A. Influence of Plasticizer on the Dielectric Properties of Polypropylene/Carbon Black Composites. Mater. Today Proc. 2023, 113391. https://doi.org/10.1016/j.matpr.2023.03.297

[3] Vélez, P.; Luque, G.L.; Barraco, D.E.; Franco, A.A.; Leiva, Е.P.M. Pore Size Distribution of Carbon Black: An Approach from a Coarse-Grained Potential. Comput. Mater. Sci 2022, 209,111409. https://doi.org/10.1016/j.commatsci.2022.111409

[4] Zhang, G.; Jiang, Y.; Wang, S.; Zhang, Y. Influence of a Novel Coupling Agent on the Performance of Recovered Carbon Black Filled Natural Rubber. Composites, Part B 2023, 255, 110614. https://doi.org/10.1016/j.compositesb.2023.110614

[5] Kouchachvili, L.; Hataley, B.; Geddis, P.; Chen, S.; McCready, A.; Zhuang, Q.; Clements, B.; Entchev, Е. Modification of Carbon Black Fuel to Improve the Performance of a Direct Carbon Fuel Cell. Int. J. Hydrogen Energy 2023, 52, 1153–1160. https://doi.org/10.1016/j.ijhydene.2023.01.074

[6] Tuul, K.; Palm, R.; Aruväli, J.; Lust, E. Dehydrogenation and Low-Pressure Hydrogenation Properties of NaAlH4 Confined in Mesoporous Carbon Black for Hydrogen Storage. Int. J. Hydrogen Energy 2023, 48, 19646–19656. https://doi.org/10.1016/j.ijhydene.2023.01.358

[7] Choi, G.B.; Kim, Y-A.; Hong, D.; Choi, Y.; Yeon, S-H.; Park, Y-K.; Lee, G-G.; Lee, H.; Jung, S-C. Carbon Black Produced by Plasma in Benzene Solution Applied as the Conductive Agent in Lithium Secondary Batteries. Carbon 2023, 205, 444–453. https://doi.org/10.1016/j.carbon.2023.01.042

[8] Ferreira, M.C.; Silva, L.S.; Bergamini, M.F.; Richter, E.M.; Muñoz, R.A.A. Using Nanostructured Carbon Black-Based Electrochemical (bio)Sensors for Pharmaceutical and Biomedical Analyses: A Comprehensive Review. J. Pharm. Biomed. Anal. 2023, 221, 115032. https://doi.org/10.1016/j.jpba.2022.115032

[9] Sun, P.; Wang. X.; Zhang. Y.; Chen. Y. Rational Construction of Hierarchical Nanocomposites by Growing Dense Polyaniline Nanoarrays on Carbon Black-Functionalized Carbon Nanofiber Backbone for Freestanding Supercapacitor Electrodes. J. Energy Storage 2023, 61, 106738. https://doi.org/10.1016/j.est.2023.106738

[10] Chiba, S.; Waki, M. Verification of the Radio Wave Absorption Effect in the Millimeter Wave Band of SWCNTs and Conventional Carbon-Based Materials. Appl. Sci. 2021, 11, 11490. https://doi.org/10.3390/app112311490

[11] Ruiz-Pereza, F.; Lopez-Estradab, S.M.; Tolentino- Hernandeza, R.V.; Caballero-Briones, F. Carbon-Based Radar Absorbing Materials: A Critical Review. J. Sci.: Adv. Mater. Devices 2022, 7, 100454. https://doi.org/10.1016/j.jsamd.2022.100454

[12] Elmaghraby, N.A.; Hassaan, M.A.; Zien, M.A.; Abedelrhim, E.M.; Ragab, S.; Yılmaz, M.; El Nemr, A. Fabrication Of Carbon Black Nanoparticles from Green Algae and Sugarcane Bagasse. Sci. Rep. 2024, 14, 5542. https://doi.org/10.1038/s41598-024-56157-4

[13] Shoaib, A.G.M.; El-Sikaily, A.; El Nemr, A.; Mohamed, A.A.; Hassan, A.A. Preparation and Characterization of Highly Surface Area Activated Carbons Followed Type IV from Marine Red Alga (Pterocladia capillacea) by Zinc Chloride Activation. Biomass Conv. Bioref. 2022, 12, 2253–2265. https://doi.org/10.1007/s13399-020-00760-8

[14] El Nemr, A.; Shoaib, A.G.M.; El Sikaily, A.; Ragab, S.; El- Deen Mohamed, A.; Hassan, A. Utilization of Green Alga Ulva lactuca for Sustainable Production of Meso-Micro Porous Nano Activated Carbon for Adsorption of Direct Red 23 Dye from Aquatic Environment. Carbon Lett. 2022, 32, 153–168. https://doi.org/10.1007/s42823-021-00262-1

[15] Gómez-Hernández, R.; Panecatl-Bernal, Y.; Méndez-Rojas, M.A. High Yield and Simple One-Step Production of Carbon Black Nanoparticles from Waste Tires. Heliyon 2019, 5, е02139. https://doi.org/10.1016/j.heliyon.2019.e02139

[16] Yerdauletov, M.S.; Nazarov, K.; Mukhametuly, B.; Yeleuov, M.A.; Daulbayev, C.; Abdulkarimova, R.; Yskakov, A.; Napolskiy, F.; Krivchenko, V. Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices. Molecules 2023, 28, 5818. https://doi.org/10.3390/molecules28155818

[17] Nadimpalli, N.K.V.; Buddhiraju, V.S.; Runkana, V. Modeling and Simulation of Carbon Black Synthesis in an Aerosol Flame Reactor. Adv. Powder Technol. 2011, 22, 141–149. https://doi.org/10.1016/j.apt.2010.12.015

[18] El Nemr, A.; Aboughaly, R.M.; El Sikaily, A.; Masoud, M.S.; Ramadan, M.S.; Ragab, S. Microporous Nano-Activated Carbon Type I Derived from Orange Peel and its Application for Cr (VI) Removal from Aquatic Environment. Biomass Convers. Biorefin. 2022, 12, 5125–5143. https://doi.org/10.1007/s13399-020-00995-5

[19] Kong, D.; Wang, S.; Shan, R.; Gu, J.; Yuan, H.; Chen, Y. Characteristics and Chemical Treatment of Carbon Black from Waste Tires Pyrolysis. J. Anal. Appl. Pyrolysis 2024, 178, 106419. https://doi.org/10.1016/j.jaap.2024.106419

[20] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Demchuk, Y.; Kukhar, O.; Korchak, B; Pochapska, I.; Zhytnetsky, I. Characteristics and Applications of Waste Tire Pyrolysis Products: a Review. Chem. Chem. Technol. 2024, 2, 244–257. https://doi.org/10.23939/chcht18.02.244

[21] Zamikula, K.; Tertyshna, O.; Tertyshny, O.; Topilnytskyy, P. Simulation of Change in Density and Viscosity of Crude Oil When Mixing. Chem. Chem. Technol. 2022, 3, 469–474. https://doi.org/10.23939/chcht16.03.469

[22] Tertyshna, O.; Royenko, K.; Martynenko, V.; Smesova, V.A.; Gyrenko, V.; Topilnytskyy, P. The Utilization of Asphalt-Resin- Paraffin Deposits as a Component of Raw Material for Visbreaking. Chem. Chem. Technol. 2016, 10, 361–366. https://doi.org/10.23939/chcht10.03.361