Pore Structure and Adsorption Properties of Coal-Based Activated Carbons Prepared by Thermal-Shock Alkaline Activation

2025;
: pp. 434 - 446
1
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, National Academy of Sciences of Ukraine
2
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, National Academy of Sciences of Ukraine
3
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, National Academy of Sciences of Ukraine

The adsorption of phenol, 4-chlorophenol, methylene blue, and Pb(II) by coal-based activated carbons prepared by a thermal shock alkaline activation was studied for the first time. The adsorption kinetics and isotherms were measured and compared with those of carbons obtained by a temperature-programmed activation. The adsorption rate was determined to be limited by the interaction of adsorbate with surface centers, and not by the diffusion into pores. Thermal shock increases adsorption rates by 1.18 – 3.16 times and equilibrium capacities by 1.13 – 2.08 times, depending on the adsorbate and the coal type. The carbons prepared by thermal shock were found to be more effective adsorbents for water purification from ecotoxicants.

[1] Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. https://doi.org/10.1016/j.rineng.2022.100678

[2] Garba, Z.N.; Zhou, W.; Lawan, I.; Xiao, W.; Zhang, M.; Wang, L.; Chen, L.; Yuan, Z. An Overview of Chlorophenols as Contaminants and their Removal from Wastewater by Adsorption: A Review. J. Environ. Manage. 2019, 241, 59–75. https://doi.org/10.1016/j.jenvman.2019.04.004

[3] Biswal, B.K.; Balasubramanian, R. Use of Biochar as a Low- Cost Adsorbent for Removal of Heavy Metals from Water and Wastewater: A Review. J. Environ. Chem. Eng. 2023, 11, 110986. https://doi.org/10.1016/j.jece.2023.110986

[4] Nahurskyi, N.; Malovanyy, M.; Bordun, I.; Szymczykiewicz, E. Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review. Chem. Chem. Technol. 2024, 18, 170–186. https://doi.org./10.23939/chcht18.02.170

[5] Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A.. Unlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211–231. https://doi.org/10.23939/chcht18.02.211

[6] Javed Area Porous Activated Carbon Derived from Asphalt. Carbon 2018, 140, 441-448. https://doi.org/10.1016/j.carbon.2018.08.038

[7] Mochizuki, T.; Kubota, M.; Matsuda, H.; D'Elia Camacho, L.F. Adsorption Behaviors of Ammonia and Hydrogen Sulfide on Activated Carbon Prepared from Petroleum Coke by KOH Chemical Activation. Fuel Process. Technol. 2016, 144, 164–169. https://doi.org/10.1016/j.fuproc.2015.12.012

[8] Liu, Z.; Hu, J.; Shen, F.; Tian, D.; Huang, M.; He, J.; Zou, J.; Zhao, L.; Zeng, Y. Trichoderma Bridges Waste Biomass and Ultra- High Specific Surface Area Carbon to Achieve a High- Performance Supercapacitor. J. Power Sources. 2021, 497, 229880. https://doi.org/10.1016/j.jpowsour.2021.229880

[9] Hamyali, H.; Nosratinia, F.; Rashidi, A.; Ardjmand, M. Anthracite Coal-Derived Activated Carbon as an Effectiveness Adsorbent for Superior Gas Adsorption and CO2 / N2 and CO2 / CH4 Selectivity: Experimental and DFT. J. Environ. Chem. En

[10] Liu, G.; Qiu, L.; Deng, H.; Wang, J.; Yao, L.;  Deng, L. gUltrahigh Surface Area Carbon Nanosheets Derived from Lotus .Leaf with Super Capacities for Capacitive Deionization and Dye Adsorption. Appl. Surf. Sci., 2020, 524, 146485. 2https://doi.org/10.1016/j.apsusc.2020.1464850

[11] Tiwari, D.; Bhunia, H.; Bajpai, P.K. Adsorption of CO2 on 2KOH Activated, N-Enriched Carbon Derived from Urea 2Formaldehyde Resin: Kinetics, Isotherm and Thermodynamic ,Studies. Appl. Surf. Sci. 2018, 439, 760–771. https://doi.org/10.1016/j.apsusc.2017.12.2031

[12] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang, R.-S. Preparation 0of Novel Activated Carbons from H2SO4-Рretreated Corncob ,Hulls with KOH Activation for Quick Adsorption of Dye and 4- Chlorophenol. J. Environ. Manage. 2011, 92, 708–713. 1https://doi.org/10.1016/j.jenvman.2010.10.0030700

[13] Bora, M.; Bhattacharjya, D.; Saikia, B.K. Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and Li–S Battery Applications. Energy Fuels 2021, 35, 18285–18307.7 https://doi.org/10.1021/acs.energyfuels.1c02518

[14] So, S.H.; Lee, S.; Mun, J.; Rho, J.; Park, C.R. What Induces the Dense Storage of Hydrogen of Liquid- or Solid-Like Density Levels in Carbon Nanopores with sub-1 nm Diameters? Carbon 2023, 204, 594–600. https://doi.org/10.1016/j.carbon.2022.12.057

[15] Kumar, K.V; Preuss, K.; Titirici, M.-M.; Rodríguez-Reinoso, F. Nanoporous Materials for the Onboard Storage of Natural Gas. Chem. Rev. 2017, 117, 1796–1825. https://doi.org/10.1021/acs.chemrev.6b00505

[16] Malini, K.; Selvakumar, D.; Kumar, N.S. Activated Carbon from Biomass: Preparation, Factors Improving Basicity and Surface Properties for Enhanced CO2 Capture Capacity – A Review. J. CO2 Util. 2023, 67, 102318.https://doi.org/10.1016/j.jcou.2022.102318

[17] Zhao, С.; Ge, L.; Mai, L.; Li, X.; Chen, S.; Li, Q.; Li, S.; Yao, L.; Wang, Y.; Xu, C. Review on Coal-Based Activated Carbon: Preparation, Modification, Application, Regeneration, and Perspectives. Energy Fuels 2023, 37, 11622–11642. https://doi.org/10.1021/acs.energyfuels.3c01866

[18] Kucherenko, V.A.; Shendrik, T.G.; Tamarkina, Yu.V.; Mysyk, R.D., Nanoporosity Development in the Thermal-Shock KOH Activation of Brown Coal. Carbon 2010, 48, 4556–4558. https://doi.org/10.1016/j.carbon.2010.07.027

[19] Jagiello, J.; Olivier, J.P. 2D-NLDFT Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation. Carbon 2013, 55, 70–80. https://doi.org/10.1016/j.carbon.2012.12.011

[20] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117

[21] Таmarkina, Yu.V.; Anishchenko, V.M.; Red'ko, A.M.; Kucherenko, V.O. Aktyvovane luhom vykopne vugill’ya. Mikroporysta struktura ta zdatnist' adsorbuvaty fenol'ni spoluky. Khimiya, Phisyka i Tekhnologiya Poverkhni. 2022, 13, 111–124. https://doi.org/10.15407/hftp13.01.111

[22] Redko, A.V.; Таmarkina, Yu.V.; Redko, A.M.; Frolova, І.B.; Kucherenko, V.O. Spriamovanist’ zmin porystoi struktury i adsorbtsiinoi zdatnosti pry topokhimichnomu okysneni aktyvovanoho luhom vykopnoho vugill’ya. Pytannya Khimii Khim. Tekhnol. 2023, 2, 127–136.

[23] Revellame, E.D.; Fortela, D.L.; Sharp, W.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order And Pseudo-Second Order Rate Laws: A Review. Cleaner Eng. Technol. 2020, 1, 100032.https://doi.org/10.1016/j.clet.2020.100032

[24] Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation. Solving Methods and Applications. Chemosphere 2022, 309, 136732. https://doi.org/10.1016/j.chemosphere.2022.136732

[25] Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and Interpretation of Adsorption Isotherm Models: A Review. J.Ha

[26] Kucherenko, V.O.; Tamarkina, Yu.V.; Popov, A.F. Luzhna zactyvatsiya z teplovym udarom – novyi sposib otrymannya ananoporuvatyh vygletsevyh materialiv. Dopovidi Natsional’noi rAkademii Nauk Ukrayiny 2016, 12, 74–81. dhttps://doi.org/10.15407/dopovidi2016.12.074

.[27] Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous Increase in Carbon Capacitance at Pore MSizes Less Than 1 nanometer. Science 2006. 313, 1760–1763. ahttps://doi.org/10.1126/science.1132195t

[28] Jiang, Y.; Chen, J.; Zeng, Q.; Zou, Z.; Li, J.; Zeng, L.; Sun, eW.; Li, C.M. Facile Method to Produce Sub-1 nm Pore-Rich rCarbon from Biomass Wastes for High Performance .Supercapacitors. Colloid Interface Sci. 2022, 612, 213–222. ,https://doi.org/10.1016/j.jcis.2021.12.144

[29] Guerrera, J.V.; Burrow, J.N.; Eichler, J.E.; Rahman, M.Z.; 3Namireddy, M.V.; Friedman, K.A.; Coffman, S.S.; Calabro, D.C.; 9Mullins, C.B. Evaluation of Two Potassium-Based Activation 3Agents for the Production of Oxygen- and Nitrogen-Doped Porous ,Carbons. Energy Fuels 2020, 34, 6101–6112. https://doi.org/10.1021/acs.energyfuels.0c00427t

[30] Zhang, Y.; Peng, J.; Feng, G.; Presser, V. Hydration Shell tEnergy Barrier Differences of Sub-Nanometer Carbon Pores pEnable Ion Sieving and Selective Ion Removal. Chem. Eng. J. s2021, 419, 129438. https://doi.org/10.1016/j.cej.2021.129438 d[31] Deditius, A.; Ela, W.P.; Wiśniewski, M.; Gauden, P.A.; oTerzyk, A.P.; Furmaniak, S.; Włoch, J.; Kaneko, K.; iNeimark, A.V. Super-Sieving Effect in Phenol Adsorption from oAqueous Solutions on Nanoporous Carbon Beads. Carbon 2018, r135, 12–20. https://doi.org/10.1016/j.carbon.2018.03.063g

[32] Chen, C.; Geng, X.; Huang, W. Adsorption of 4- jChlorophenol and Aniline by Nanosized Activated Carbons. jh a z m a t Chem. Eng. J. 2017, 327, 941–952.https://doi.org/10.1016/j.cej.2017.06.183

[33] Ahmed, M.J.; Theydan, S.K. Adsorption of p-Chlorophenol onto Microporous Activated Carbon from Albizia Lebbeck Seed Pods by One-Step Microwave Assisted Activation. J. Anal. Appl. Pyrolysis 2013, 100, 253–260. https://doi.org/10.1016/j.jaap.2013.01.008

[34] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang, R.-S. Preparation of Activated Carbons from Unburnt Coal in Bottom Ash with KOH Activation for Liquid-Phase Adsorption. J. Environ.Manage. 2010, 91, 1097–1102. https://doi.org/10.1016/j.jenvman.2009.12.011 5Ja

[36] Dao, M. U.; Le, H. S.; Hoang, H. Y.; Tran, V. A.; Doan, V. Dr .; Le, T. T. N.; Sirotkin, A. Natural Core-Shell Structure Ai ctivated Carbon Beads Derived from Litsea glutinosa Seeds for  R, emoval of Methylene Blue: Facile Preparation, Characterization, and Adsorption Properties. Environ. Res. 2021, 198, 110481. hKttps://doi.org/10.1016/j.envres.2020.110481[; 3A7b]d

[38] Li, L.; Wu, M.; Song, C.; Liu, L.; Gong, W.; Ding, Y.; Y,l ao, J. Efficient Removal of Cationic Dyes via Activated Carbon wh ith Ultrahigh Specific Surface Derived from Vinasse Wastes. B.a ioresour. Technol. 2021, 322, 124540. h;mttps://doi.org/10.1016/j.biortech.2020.124540

[39] Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F; Fan, X. A,e dsorption of Cd (II) and Pb (II) Ions from Aqueous Solutions Ud sing Mesoporous Activated Carbon Adsorbent: Equilibrium, A, S.;Jaw a.dLow-Cost Activated Carbon Preparation from Corn stigmata F, ibers Chemically Activated Using H3PO4, ZnCl2 and KOH: Study of Methylene Blue Adsorption, Stochastic Isotherm and FA r aH c; tA al l O Kt ih nm ea tn i, c .ZA 2;0Y2o 2u Kinetics and Characterisation Studies. J. Environ. Chem. Eng. 2017, 5, 679–698. https://doi.org/10.1016/j.jece.2016.12.043

[40] Ghorbani, M.; Seyedin, O.; Aghamohammadhassan, M. Adsorptive Removal of Lead (II) Ion from Water and Wastewater Media Using Carbon-Based Nanomaterials As Unique Sorbents: A Review. J. Environ. Manage. 2020, 254, 109814. https://doi.org/10.1016/j.jenvman.2019.109814

[41] Jiang, J.; Li, R.; Yang, K.; Li, Y.; Deng, L.; Che, D. Investigation on Pb2+ Adsorption Characteristics by AAEMs-Rich Biochar in Aqueous Solution: Performance and Mechanism. Environ. Res. 2023, 236, 116731.https://doi.org/10.1016/j.envres.2023.116731

[42] Mahadevi, A.S.; Sastry, G.N. Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science.​Chem. Rev. 2013, 113, 2100–2138.