Пориста структура й адсорбційні властивості активованого вуглецю на основі вугілля, отриманного лужною активацією з термоударом

2025;
: cc. 434 - 446
1
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, National Academy of Sciences of Ukraine
2
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, National Academy of Sciences of Ukraine
3
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, National Academy of Sciences of Ukraine

Уперше досліджено адсорбцію фенолу, 4-хлорфенолу, метиленового блакитного та Pb(II) зразками активованого вуглецю, отриманими лужною активацією з термоударом. Виміряно кінетику й ізотерми адсорбції та порівняно з аналогічними даними для вуглецю, отриманого температурно-програмованою активацією. Визначено, що швидкість адсорбції лімітується взаємодією адсорбату з поверхневими центрами, а не дифузією до пор. Термоудар збільшує швидкості адсорбції в 1,18 – 3,16 рази, а рівноважну ємність – в 1,13 – 2,08 рази залежно від адсорбату і типу вугілля. Зразки вуглецю, отримані термошоком, є ефективнішими адсорбентами для очищення води від екотоксикантів.

[1] Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. https://doi.org/10.1016/j.rineng.2022.100678

[2] Garba, Z.N.; Zhou, W.; Lawan, I.; Xiao, W.; Zhang, M.; Wang, L.; Chen, L.; Yuan, Z. An Overview of Chlorophenols as Contaminants and their Removal from Wastewater by Adsorption: A Review. J. Environ. Manage. 2019, 241, 59–75. https://doi.org/10.1016/j.jenvman.2019.04.004

[3] Biswal, B.K.; Balasubramanian, R. Use of Biochar as a Low- Cost Adsorbent for Removal of Heavy Metals from Water and Wastewater: A Review. J. Environ. Chem. Eng. 2023, 11, 110986. https://doi.org/10.1016/j.jece.2023.110986

[4] Nahurskyi, N.; Malovanyy, M.; Bordun, I.; Szymczykiewicz, E. Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review. Chem. Chem. Technol. 2024, 18, 170–186. https://doi.org./10.23939/chcht18.02.170

[5] Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A.. Unlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211–231. https://doi.org/10.23939/chcht18.02.211

[6] Javed Area Porous Activated Carbon Derived from Asphalt. Carbon 2018, 140, 441-448. https://doi.org/10.1016/j.carbon.2018.08.038

[7] Mochizuki, T.; Kubota, M.; Matsuda, H.; D'Elia Camacho, L.F. Adsorption Behaviors of Ammonia and Hydrogen Sulfide on Activated Carbon Prepared from Petroleum Coke by KOH Chemical Activation. Fuel Process. Technol. 2016, 144, 164–169. https://doi.org/10.1016/j.fuproc.2015.12.012

[8] Liu, Z.; Hu, J.; Shen, F.; Tian, D.; Huang, M.; He, J.; Zou, J.; Zhao, L.; Zeng, Y. Trichoderma Bridges Waste Biomass and Ultra- High Specific Surface Area Carbon to Achieve a High- Performance Supercapacitor. J. Power Sources. 2021, 497, 229880. https://doi.org/10.1016/j.jpowsour.2021.229880

[9] Hamyali, H.; Nosratinia, F.; Rashidi, A.; Ardjmand, M. Anthracite Coal-Derived Activated Carbon as an Effectiveness Adsorbent for Superior Gas Adsorption and CO2 / N2 and CO2 / CH4 Selectivity: Experimental and DFT. J. Environ. Chem. En

[10] Liu, G.; Qiu, L.; Deng, H.; Wang, J.; Yao, L.;  Deng, L. gUltrahigh Surface Area Carbon Nanosheets Derived from Lotus .Leaf with Super Capacities for Capacitive Deionization and Dye Adsorption. Appl. Surf. Sci., 2020, 524, 146485. 2https://doi.org/10.1016/j.apsusc.2020.1464850

[11] Tiwari, D.; Bhunia, H.; Bajpai, P.K. Adsorption of CO2 on 2KOH Activated, N-Enriched Carbon Derived from Urea 2Formaldehyde Resin: Kinetics, Isotherm and Thermodynamic ,Studies. Appl. Surf. Sci. 2018, 439, 760–771. https://doi.org/10.1016/j.apsusc.2017.12.2031

[12] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang, R.-S. Preparation 0of Novel Activated Carbons from H2SO4-Рretreated Corncob ,Hulls with KOH Activation for Quick Adsorption of Dye and 4- Chlorophenol. J. Environ. Manage. 2011, 92, 708–713. 1https://doi.org/10.1016/j.jenvman.2010.10.0030700

[13] Bora, M.; Bhattacharjya, D.; Saikia, B.K. Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and Li–S Battery Applications. Energy Fuels 2021, 35, 18285–18307.7 https://doi.org/10.1021/acs.energyfuels.1c02518

[14] So, S.H.; Lee, S.; Mun, J.; Rho, J.; Park, C.R. What Induces the Dense Storage of Hydrogen of Liquid- or Solid-Like Density Levels in Carbon Nanopores with sub-1 nm Diameters? Carbon 2023, 204, 594–600. https://doi.org/10.1016/j.carbon.2022.12.057

[15] Kumar, K.V; Preuss, K.; Titirici, M.-M.; Rodríguez-Reinoso, F. Nanoporous Materials for the Onboard Storage of Natural Gas. Chem. Rev. 2017, 117, 1796–1825. https://doi.org/10.1021/acs.chemrev.6b00505

[16] Malini, K.; Selvakumar, D.; Kumar, N.S. Activated Carbon from Biomass: Preparation, Factors Improving Basicity and Surface Properties for Enhanced CO2 Capture Capacity – A Review. J. CO2 Util. 2023, 67, 102318.https://doi.org/10.1016/j.jcou.2022.102318

[17] Zhao, С.; Ge, L.; Mai, L.; Li, X.; Chen, S.; Li, Q.; Li, S.; Yao, L.; Wang, Y.; Xu, C. Review on Coal-Based Activated Carbon: Preparation, Modification, Application, Regeneration, and Perspectives. Energy Fuels 2023, 37, 11622–11642. https://doi.org/10.1021/acs.energyfuels.3c01866

[18] Kucherenko, V.A.; Shendrik, T.G.; Tamarkina, Yu.V.; Mysyk, R.D., Nanoporosity Development in the Thermal-Shock KOH Activation of Brown Coal. Carbon 2010, 48, 4556–4558. https://doi.org/10.1016/j.carbon.2010.07.027

[19] Jagiello, J.; Olivier, J.P. 2D-NLDFT Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation. Carbon 2013, 55, 70–80. https://doi.org/10.1016/j.carbon.2012.12.011

[20] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117

[21] Таmarkina, Yu.V.; Anishchenko, V.M.; Red'ko, A.M.; Kucherenko, V.O. Aktyvovane luhom vykopne vugill’ya. Mikroporysta struktura ta zdatnist' adsorbuvaty fenol'ni spoluky. Khimiya, Phisyka i Tekhnologiya Poverkhni. 2022, 13, 111–124. https://doi.org/10.15407/hftp13.01.111

[22] Redko, A.V.; Таmarkina, Yu.V.; Redko, A.M.; Frolova, І.B.; Kucherenko, V.O. Spriamovanist’ zmin porystoi struktury i adsorbtsiinoi zdatnosti pry topokhimichnomu okysneni aktyvovanoho luhom vykopnoho vugill’ya. Pytannya Khimii Khim. Tekhnol. 2023, 2, 127–136.

[23] Revellame, E.D.; Fortela, D.L.; Sharp, W.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order And Pseudo-Second Order Rate Laws: A Review. Cleaner Eng. Technol. 2020, 1, 100032.https://doi.org/10.1016/j.clet.2020.100032

[24] Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation. Solving Methods and Applications. Chemosphere 2022, 309, 136732. https://doi.org/10.1016/j.chemosphere.2022.136732

[25] Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and Interpretation of Adsorption Isotherm Models: A Review. J.Ha

[26] Kucherenko, V.O.; Tamarkina, Yu.V.; Popov, A.F. Luzhna zactyvatsiya z teplovym udarom – novyi sposib otrymannya ananoporuvatyh vygletsevyh materialiv. Dopovidi Natsional’noi rAkademii Nauk Ukrayiny 2016, 12, 74–81. dhttps://doi.org/10.15407/dopovidi2016.12.074

.[27] Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous Increase in Carbon Capacitance at Pore MSizes Less Than 1 nanometer. Science 2006. 313, 1760–1763. ahttps://doi.org/10.1126/science.1132195t

[28] Jiang, Y.; Chen, J.; Zeng, Q.; Zou, Z.; Li, J.; Zeng, L.; Sun, eW.; Li, C.M. Facile Method to Produce Sub-1 nm Pore-Rich rCarbon from Biomass Wastes for High Performance .Supercapacitors. Colloid Interface Sci. 2022, 612, 213–222. ,https://doi.org/10.1016/j.jcis.2021.12.144

[29] Guerrera, J.V.; Burrow, J.N.; Eichler, J.E.; Rahman, M.Z.; 3Namireddy, M.V.; Friedman, K.A.; Coffman, S.S.; Calabro, D.C.; 9Mullins, C.B. Evaluation of Two Potassium-Based Activation 3Agents for the Production of Oxygen- and Nitrogen-Doped Porous ,Carbons. Energy Fuels 2020, 34, 6101–6112. https://doi.org/10.1021/acs.energyfuels.0c00427t

[30] Zhang, Y.; Peng, J.; Feng, G.; Presser, V. Hydration Shell tEnergy Barrier Differences of Sub-Nanometer Carbon Pores pEnable Ion Sieving and Selective Ion Removal. Chem. Eng. J. s2021, 419, 129438. https://doi.org/10.1016/j.cej.2021.129438 d[31] Deditius, A.; Ela, W.P.; Wiśniewski, M.; Gauden, P.A.; oTerzyk, A.P.; Furmaniak, S.; Włoch, J.; Kaneko, K.; iNeimark, A.V. Super-Sieving Effect in Phenol Adsorption from oAqueous Solutions on Nanoporous Carbon Beads. Carbon 2018, r135, 12–20. https://doi.org/10.1016/j.carbon.2018.03.063g

[32] Chen, C.; Geng, X.; Huang, W. Adsorption of 4- jChlorophenol and Aniline by Nanosized Activated Carbons. jh a z m a t Chem. Eng. J. 2017, 327, 941–952.https://doi.org/10.1016/j.cej.2017.06.183

[33] Ahmed, M.J.; Theydan, S.K. Adsorption of p-Chlorophenol onto Microporous Activated Carbon from Albizia Lebbeck Seed Pods by One-Step Microwave Assisted Activation. J. Anal. Appl. Pyrolysis 2013, 100, 253–260. https://doi.org/10.1016/j.jaap.2013.01.008

[34] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.; Juang, R.-S. Preparation of Activated Carbons from Unburnt Coal in Bottom Ash with KOH Activation for Liquid-Phase Adsorption. J. Environ.Manage. 2010, 91, 1097–1102. https://doi.org/10.1016/j.jenvman.2009.12.011 5Ja

[36] Dao, M. U.; Le, H. S.; Hoang, H. Y.; Tran, V. A.; Doan, V. Dr .; Le, T. T. N.; Sirotkin, A. Natural Core-Shell Structure Ai ctivated Carbon Beads Derived from Litsea glutinosa Seeds for  R, emoval of Methylene Blue: Facile Preparation, Characterization, and Adsorption Properties. Environ. Res. 2021, 198, 110481. hKttps://doi.org/10.1016/j.envres.2020.110481[; 3A7b]d

[38] Li, L.; Wu, M.; Song, C.; Liu, L.; Gong, W.; Ding, Y.; Y,l ao, J. Efficient Removal of Cationic Dyes via Activated Carbon wh ith Ultrahigh Specific Surface Derived from Vinasse Wastes. B.a ioresour. Technol. 2021, 322, 124540. h;mttps://doi.org/10.1016/j.biortech.2020.124540

[39] Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F; Fan, X. A,e dsorption of Cd (II) and Pb (II) Ions from Aqueous Solutions Ud sing Mesoporous Activated Carbon Adsorbent: Equilibrium, A, S.;Jaw a.dLow-Cost Activated Carbon Preparation from Corn stigmata F, ibers Chemically Activated Using H3PO4, ZnCl2 and KOH: Study of Methylene Blue Adsorption, Stochastic Isotherm and FA r aH c; tA al l O Kt ih nm ea tn i, c .ZA 2;0Y2o 2u Kinetics and Characterisation Studies. J. Environ. Chem. Eng. 2017, 5, 679–698. https://doi.org/10.1016/j.jece.2016.12.043

[40] Ghorbani, M.; Seyedin, O.; Aghamohammadhassan, M. Adsorptive Removal of Lead (II) Ion from Water and Wastewater Media Using Carbon-Based Nanomaterials As Unique Sorbents: A Review. J. Environ. Manage. 2020, 254, 109814. https://doi.org/10.1016/j.jenvman.2019.109814

[41] Jiang, J.; Li, R.; Yang, K.; Li, Y.; Deng, L.; Che, D. Investigation on Pb2+ Adsorption Characteristics by AAEMs-Rich Biochar in Aqueous Solution: Performance and Mechanism. Environ. Res. 2023, 236, 116731.https://doi.org/10.1016/j.envres.2023.116731

[42] Mahadevi, A.S.; Sastry, G.N. Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science.​Chem. Rev. 2013, 113, 2100–2138.