Study on Wheat and Oat Bran Extracts and Their Antioxidant Properties

2025;
: pp. 529 - 537
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The article presents the results of a study on aqueous and aqueous-ethanolic extracts derived from the cell wall material of oat and wheat bran, focusing on their content of phenolic compounds, flavonoids, and amino acids. The total phenolic content was assessed spectrophotometrically using the Folin–Ciocalteu method, while the total flavonoid content was determined via an aluminum chloride colorimetric assay. Gallic acid, ferulic acid, and quercetin were also identified in the samples using thin-layer chromatography. The antioxidant activity of the extracts was evaluated using rat liver hepatocytes under in vitro conditions of free radical oxidation. The results indicated that the aqueous-ethanolic extracts of wheat and oat bran did not significantly reduce lipid peroxidation or oxidative protein modification. However, wheat bran extracts exhibited higher antioxidant activity than those from oat bran.

[1] Praphasawat, R; Palipoch, S; Suwannalert, P; Payuhakrit, W; Kunsorn, P; Laovitthayanggoon, S; Thakaew, S; Munkong, N; Klajing, W. Red Rice Bran Extract Suppresses Colon Cancer Cells via Apoptosis Induction/Cell Cycle Arrest and Exerts Antimutagenic Activity. Exp. Oncol. 2023, 45, 220–230. https://doi.org/10.15407/exp-oncology.2023.02.220

[2] Reddy, S.S.; Krishnan, C. Production of Prebiotics and Antioxidants as Health Food Supplements from Lignocellulosic Materials Using Multienzymatic Hydrolysis. Int. J. Chem. Sci. 2010, 8, S535–S549.

[3] Kapreliants, L.; Zhurlova, O. Technology of Wheat and Rye Bran Biotransformation into Functional Ingredients. Int. Food Res. J. 2017, 24, 1975–1979. http://www.ifrj.upm.edu.my/volume-24-2017.html

[4] Grande, S.; Bogani, P.; de Saizieu A.; Schueler, G.; Galli, C.; Visioli, F. Vasomodulating Potential of Mediterranean Wild Plant Extracts. J. Agric. Food Chem. 2004, 52, 5021–5026. https://doi.org/10.1021/jf049436e

[5] Yu, L.; Perret, J.; Harris, M.; Wilson, J.; Haley, S. Antioxidant Properties of Bran Extracts from “Akron” Wheat Grown at Different Locations. J. Agric. Food Chem. 2003, 51, 1566–1570. https://doi.org/10.1021/jf020950z

[6] Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. J. Agric. Food Chem. 2005, 53, 1370–1373. https://doi.org/10.1021/jf048396b

[7] Elhaty, I.A.; Zeyoudi, S.A. A. Comparative Study of the Phenolic and Flavonoids Contents, and Antioxidant Activity of Ziziphus Mauritiana’s Leaves, Ripe and Unripe Fruit Extracts from UAE. Chem. Chem. Technol. 2024, 18, 363–371. https://doi.org/10.23939/chcht18.03.363

[8] Asma, F.; Salah Eddine, H.; Yassmine, C.; Hanane, Z. Phytochemical Screening, Antibacterial and Antioxidant Activities of Ocimum basilicum L. Cultivated in Biskra, Algeria. Chem. Chem. Technol. 2023, 17, 397–406. https://doi.org/10.23939/chcht17.02.397

[9] Wijesooriya, S.S.; Pandithavidana, D.R. Investigation and Comparison of Antioxidant Potential of Catechins Present in Green Tea: DFT Study. Chem. Chem. Technol. 2022, 16, 591– 599. https://doi.org/10.23939/chcht16.04.591

[10] Rebolleda, S.; González-San José, M.L.; Sanz, M.T.; Beltrán, S.; Solaesa, Á.G. Bioactive Compounds of a Wheat Bran Oily Extract Obtained with Supercritical Carbon Dioxide. Foods 2020, 9, 625. https://doi.org/10.3390/foods9050625

[11] Prebiotics: Development and Application. Gibson, G.R., Rastall, R.A., Eds.; John Wiley & Sons, Ltd., 2006. https://doi.org/10.1002/9780470023150

[12] Dwivedi, S.; Sahrawat, K.; Puppala, N.; Ortiz, R. Plant Prebiotics and Human Health: Biotechnology to Breed Prebioticrich Nutritious Food Crops. Electron. J. Biotechnol. 2014, 17, 238–245. https://doi.org/10.1016/j.ejbt.2014.07.004.

[13] Singh, R.D.; Banerjee, J.; Arora, A. Prebiotic Potential of Oligosaccharides: A Focus on Xylan Derived Oligosaccharides. Bioact. Carbohydr. Dietary Fibre 2015, 5, 19–30. https://doi.org/10.1016/j.bcdf.2014.11.003

[14] Collins, H.M.; Burton, R.A.; Topping, D.L.; Liao, M.-L.; Bacic, A.; Fincher, G.B. Review: Variability in Fine Structures of Noncellulosic Cell Wall Polysaccharides from Cereal Grains: Potential Importance in Human Health and Nutrition. Cereal Chem. 2010, 87, 272–282. https://doi.org/10.1094/CCHEM-87-4-0272

[15] Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total Phenolic and Total Flavonoid Content, Antioxidant Activity and Sensory Evaluation of Pseudocereal Breads. LWT Food Sci. Technol. 2012, 46, 548–555. https://doi.org/10.1016/j.lwt.2011.11.009

[16] Balasubashini, M.S.; Rukkumani, R.; Viswanathan, P.; Menon, V.P. Ferulic Acid Alleviates Lipid Peroxidation in Diabetic Rats. Phytother. Res. 2004, 18, 310–314. https://doi.org/10.1002/ptr.1440

[17] Andersson, A.A.M.; Lampi A.-M.; Nyström, L.; Piironen, V.; Li, L.; Ward, J.L.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Boros, D.; Fraś, A.; et al. Phytochemical and Dietary Fiber Components in Barley Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9767–9776. https://doi.org/10.1021/jf802037f

[18] Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. https://doi.org/10.1002/anie.200603817

[19] Sharma, O.P.; Bhat, T.K.; Singh, B. Thin-Layer Chromatography of Gallic Acid, Methyl Gallate, Pyrogallol, Phloroglucinol, Catechol, Resorcinol, Hydroquinone, Catechin, Epicatechin, Cinnamic Acid, p-Coumaric Acid, Ferulic Acid and Tannic Acid. J. Chromatogr. A 1998, 822, 167–171. https://doi.org/10.1016/S0021-9673(98)00490-7

[20] Borges, M.F.M.; Pinto, M.A.M.M. Separation of the Diastereoisomers of Ethyl Esters of Caffeic, Ferulic, and Isoferulic Acids by Thin-Layer and High Performance Liquid Chromatography. J. Liq. Chromatogr. 1994, 17, 1125–1139. https://doi.org/10.1080/10826079408013390

[21] Sheng, Y.X.; Li, L.; Wang, Q.; Guo, H.Z.; Guo, D.A. Simultaneous Determination of Gallic Acid, Albiflorin, Paeoniflorin, Ferulic Acid and Benzoic Acid in Si-Wu Decoction by High-Performance Liquid Chromatography DAD Method. J. Pharm. Biomed. Anal. 2005, 37, 805–810. https://doi.org/10.1016/j.jpba.2004.11.002

[22] Luo, L.; Wang, X.; Li, Q.; Ding, Y.; Jia, J.; Deng, D. Voltammetric Determination of Ferulic Acid by Didodecyldimethyl-Ammonium Bromide/Nafion Composite Film- Modified Carbon Paste Electrode. Anal. Sci. 2010, 26, 907–911. https://doi.org/10.2116/analsci.26.907

[23] Li, L.-J.; Yu, L.-B.; Chen, Q.-F.; Cheng, H.; Wu, F.-M.; Wu, J.-L.; Kong, H.-X. Determination of Ferulic Acid Based on L- Cysteine Self-Assembled Modified Gold Electrode Coupling Irreversible Biamperometry. Chin. J. Anal. Chem. 2007, 35, 933–937. https://doi.org/10.1016/S1872-2040(07)60060-7

[24] Hamada, V.; Krvavych, A.; Konechna, R.; Mylyanych, А.; Buchkevych, I.; Holubieva, T.; Lubenets, V. Development of Technology for Obtaining Herbal Extracts of Adonis Vernalis. Lett. Appl. NanoBioSci. 2023, 12, 78. https://doi.org/10.33263/LIANBS123.078

[25] Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of Freezing and Storage on the Phenolics, Ellagitannins, Flavonoids, and Antioxidant Capacity of Red Raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. https://doi.org/10.1021/jf020141f

[26] Mullen, W.; McGinn, J.; Lean, M.E.J.; MacLean, M.R.; Gardner, P.; Duthie, G.G.; Yokota, T.; Crozier, A. Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. J. Agric. Food Chem. 2002, 50, 5191–5196. https://doi.org/10.1021/jf020140n

[27] Kaur, R.; Ahluwalia, P.; Sachdev, P.A.; Kaur, A. Development of Gluten-Free Cereal Bar for Gluten Intolerant Population by Using Quinoa as Major Ingredient. J. Food Sci. Technol. 2018, 55, 3584–3591. https://doi.org/10.1007/s13197- 018-3284-x.

[28] Kaprelyants, L.; Zhurlova, O. Biotechnological Approaches for the Production of Functional Foods and Supplements from Cereal Raw Materials. Food Sci. Technol. 2014, 2, 15–19. https://doi.org/10.15673/2073-8684.27/2014.29697

[29] Dias, F.S.; David, J.M.; David, J.P. Determination of Phenolic Acids and Quercetin in Brazilian Red Wines from Vale do São Francisco Region Using Liquid-Liquid Ultrasound- Assisted Extraction and HPLC-DAD-MS. J. Braz. Chem. Soc. 2016, 27, 1055–1059. https://doi.org/10.5935/0103-5053.20150363

[30] Kaprelyants, L.; Yegorova, A.; Trufkati, L.; Pozhitkova, L. Functional Foods: Prospectots in Ukraine. Food Sci. Technol. 2019, 13, 15–23. https://doi.org/10.15673/fst.v13i2.1382

[31] Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Monks, J.L.F.; Elias, M.C.; Vanier, N.L.; de Oliveira, M. The Revisited Levels of Free and Bound Phenolics in Rice: Effects of the Extraction Procedure. Food Chem. 2016, 208, 116–123. https://doi.org/10.1016/j.foodchem.2016.03.107

[32] Perales-Sánchez, J.X.K.; Reyes-Moreno, C.; Gómez-Favela, M.A.; Milán-Carrillo, J.; Cuevas-Rodríguez, E.O.; Valdez-Ortiz, A.; Gutiérrez-Dorado, R. Increasing the Antioxidant Activity, Total Phenolic and Flavonoid Contents by Optimizing the Germination Conditions of Amaranth Seeds. Plant Foods Hum. Nutr. 2014, 69, 196–202. https://doi.org/10.1007/s11130-014-0430-0

[33] Hole, A.S.; Grimmer, S.; Jensen, M.R.; Sahistrøm, S. Synergistic and Suppressive Effects of Dietary Phenolic Acids and Other Phytochemicals from Cereal Extracts on Nuclear Factor Kappa B Activity. Food Chem. 2012, 133, 969–977. https://doi.org/10.1016/j.foodchem.2012.02.017

[34] Bazavluk, Y.; Vanko, R.; Konechnyi, Y.; Konechna, R. Obtaining and Research of Callus Biomass of Some Plants of the Family Ranunсulaсаe. Herba Polonica 2023, 69, 45–57. https://doi.org/10.5604/01.3001.0053.9652

[35] Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical Screening and Extraction: A Review. Internationale Pharmaceutica Sciencia 2011, 1, 98-106.

[36] Blyznyuk, N.; Prokopenko, Yu.; Georgiyants, V. Development of Methods for Determination of Phenolic Acids and Flavonoids in Capsules Containing Corylus avellana L. Dry Extract. ScienceRise: Pharmaceutical Science 2016, 2, 18–22. https://doi.org/10.15587/2313-8416.2016.61495

[37] Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basilico, N.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic Compounds from Achillea millefolium L. and Their Bioactivity. Acta Biochim. Pol. 2011, 58, 203–219. https://doi.org/10.18388/abp.2011_2266

[38] Karpіuk, V.R. Research on the Development of a Complex Extract Based on Plants of the Ranunculaceae Family. Chemistry, Technology and Application of Substances 2022, 5, 94–99. https://doi.org/10.23939/ctas2022.02.094

[39] Tee-ngam, P.; Nunant, N.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and Rapid Determination of Ferulic Acid Levels in Food and Cosmetic Samples Using Paper-Based Platforms. Sensors 2013, 13, 13039–13053. https://doi.org/10.3390/s131013039

[40] Stanek, N.; Jasicka-Misiak, I. HPTLC Phenolic Profiles as Useful Tools for the Authentication of Honey. Food Anal. Methods 2018, 11, 2979–2989. https://doi.org/10.1007/s12161-018-1281-3

[41] Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. https://doi.org/10.1016/j.jfda.2013.11.001

[42] Karpiuk, V.; Konechnyi, Y.; Yaremkevych, O.; Karpiuk, I.; Mylyanych, A.; Krvavych, A.; Konechna, R. Study of the Content of Phenolic Compounds, Antimicrobial and Antioxidant Properties of the Herb Caltha palustris. Res. J. Pharm. Technol. 2024, 17, 5673-5679. https://doi.org/10.52711/0974-360X.2024.00864

[43] Zarivna, N.O.; Horlachuk, N.V. Vyznachennia kilkisnoho vmistu aminokyslot u ridkomu ekstrakti chebretsiu povzuchoho, vybir kryteriiv pryjniatnosti. Medychna ta klinichna khimia 2022, 1, 77–80. https://doi.org/10.11603/mcch.2410- 681X.2022.i1.13041

[44] Lushchak, V.I.; Bahniukova, T.V.; Luzhna, L.I. Pokaznyky oksydatyvnoho stresu. 2. Peroksydy lipidiv. Ukr. Biokhim. Zh. 2006, 78, 113–119. (in Ukrainian)

[45] Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

[46] Morgan, G.A.; Leech, N.L.; Gloeckner, G.W.; Barrett, K.C. IBM SPSS for Introductory Statistics. Use and Interpretation, 4th ed.; Taylor & Francis Group, 2012.