Inhibition of 2-Hexenal Autooxidation by Essential Oils from Clove Bud, Laurel, Cardamom, Nutmeg and Mace

Tamara Misharina, Margarita Terenina and Natalia Krikunova

The antioxidant properties and stability during the storage of hexane solutions of 5 individual essential oils from clove bud (Caryophyllus aromaticus L.), cardamom (Elettaria cardamomum L.), laurel (Laurus nobilis L.), nutmeg (Myristica fragrans Houtt.), and mace (Myristica fragrans Houtt) were studied by the method of capillary gas-liquid chromatography. We assessed the antioxidant properties by the efficiency of autooxidation inhibition of aliphatic aldehyde (trans-2-hexenal) into the corresponding carbon acid. The essential oil of clove bud had the maximal efficiency of inhibition of 2- hexenal oxidation (83 %), which did not depend on oil concentration in model solution. Antioxidant properties of essential oils of nutmeg, mace and laurel was connected with substituted phenols, and depended poorly on oils concentration in model systems. The stronger dependence of the antioxidant activity on the oil concentration in model solution was found for cardamom essential oil. We studied the changes in the essential oils composition during the storage of their hexane solutions for 100 days in the light and compared it with the stability of pure essential oils stored for a year. 

[1] Madsen L., Nielsen B., Bertelsen G. and Skibsted L.: Food Chem., 1996, 57, 331.
[2] Voitkevich S.: Efirnye Masla dlya Parfyumerii i Aromaterapii. Pishchevaya Prom., Moskwa 1999. 
[3] Berger R. (Ed.): Flavours and Fragrances. Chemistry, Bioprocessing and Sustainability. Springer, New York 2007. 
[4] Bauer K., Garbe D. and Surburg H.: Common Fragrance and Flavor Materials. VCH Verlag, Weinheim, 1990. 
[5] Cervato G., Carabeli M., Gervasio S. et al.: J. Food Biochem., 2000, 24, 453. 
[6] Dorman H., Peltoketo A., Hiltunen R. and Tikkaken M.: Food Chemistry, 2003, 83, 255.
[7] Lee K. and Shibamoto T.: Food Chem., 2001, 74, 443. 
[8] Lee K., Kim Y., Kim D.-O. et al.: J. Agric. Food Chem., 2003, 51, 6516. 
[9] Litwinienko G. and Ingold K.: Acc. Chem. Res., 2007, 40, 222. 
[10] Ruberto G. and Baratta M.: Food Chem., 2000, 69, 167. 
[11] Foti M. and Ingold K.: J. Agric. Food Chem., 2003, 51, 2758. 
[12] Baratta M., Dorman H., Deans S. et al.: J. Essent. Oil Res., 1998, 10, 618. 
[13] Pekkarinen S., Stocmann H., Schwarz K. et al.: J. Agric. Food Chem., 1999, 47, 3036. 
[14] Sacchetti G., Maietti S., Muzzoli M. et al.: Food Chem., 2005, 91, 621. 
[15] Singh G., Maurya S., Catalan C. and de Lampasona M.: Flavour Fragrance J., 2005, 20, 1. 
[16] Wei A. and Shibamoto T.: J. Agric. Food Chem., 2007, 55, 1737. 
[17] Menut C., Bessiere J., Samate D. et al.: J. Essent. Oil Res., 2000, 12, 207.
[18] Mimica-Dukic N., Bozin B., Sokovic M. and Zimin N.: J. Agric. Food Chem., 2004, 52, 2485. 
[19] Huang D., Ou B. and Prior L.: J. Agric. Food Chem., 2005, 53, 1841.
[20] Lee K. and Shibamoto T.: J. Agric. Food Chem., 2002, 50, 4947. 
[21] Lee K. and Shibamoto T.: J. Sci. Food Agric., 2001, 81, 1573.
[22] Yanagimoto K., Ochi H., Lee K. and Shibamoto T.: J. Agric. Food Chem., 2003, 51, 7396.
[23] Lee C., Shibamoto T. and Lee K.: Food Chem., 2005, 91, 131.
[24] Bozin B., Mimica-Dukic N. and Anachov G.: J. Agric. Food Chem., 2006, 54, 1822.
[25] Misharina T. and Samusenko A.: Appl. Biochem. & Microbiol., 2008, 44, 473.
[26] Jennings W. and Shibamoto T.: Qualitative Analysis of the Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. Academic, New York 1980. 
[27] Misharina T.: Appl. Biochem. & Microbiol., 2001, 37, 622.
[28] Misharina T., Polshkov A., Ruchkina E. and Medvedeva I.: Appl. Biochem. & Microbiol., 2003, 39, 311.
[29] Misharina T. and Polshkov A.: Appl. Biochem. & Microbiol., 2005, 41, 610.