Parametrized orthogonal transforms for data encryption

: pp. 93-98
Lodz University of Technology
Lodz University of Technology

In this paper a scheme of data encryption and decryption that takes advantage of fast parametrized orthogonal transforms has been proposed. A way of mapping the private key to the values of transform parameters has been formulated and the effectiveness of the proposed scheme has been verified experimentally. Moreover, the authors propose the directions of further research and development of the considered data encryption scheme.

  1. L. Krikor, S. Baba, T. Arif, and Z. Shaaban, “Image encryption using DCT and stream cipher”, European Journal of Scientific Research, vol. 32, № 1, pp. 47-57, 2009.
  2. J. Xie, S. Agaian, and J. Noonan, “Secure information hiding algorithm using parametric Slant-Hadamard transforms”, in Proc. of Mobile Multi-media/Image Processing, Security, and Applications, vol. 6982,  2008.
  3. A. Pande and J. Zambreno, “The secure wavelet transform”, Journal of Real-Time Image Processing, Springer, 2010.
  4. S. Agaian, K. Tourshan, and J. P. Noonan, “Parametric Slant-Hadamard transforms with appli-cations”, IEEE Signal Processing Letters, vol. 9, № 11, pp. 375-377, November 2002.
  5. S. Minasyan, J. Astola, and D. Guevorkian, “On unified architectures for synthesizing and implementa-tion of fast parametric transforms”, in Proc. 5th International Conference, Information, Communication and Signal Processing, pp. 710-714, December 2005.
  6. S. Bouguezel and M. O. Ahmad, “A new class of reciprocal-orthogonal rarametric transforms”, IEEE Trans. On Circuits and Systems, vol. 56, № 4, pp. 795-805, April 2009.
  7. “Data encryption standard”, FIPS PUB 46, National Bureau of Standards, Jan. 1997.
  8. X. Lai, On the design and security of block cipher, Konstanz, Germany: Hartung-Gorre, 1992.
  9. R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced Encryption Standard”, AES submission, 1998.
  10. M. M. Yatsymirskyy and R. I. Liskevytch, “Lattice structures for Fourier, Hartley, cosine and sine transformations”, Modeling and Information Technolo-gies, Ukrainian Academy of Sciences, vol. 2, pp. 173-181, 1999. (Ukrainian)
  11. M. M. Yatsymirskyy, “Encryption on the base of FFT algorithm graph”, Journal of East Ukrainian National University, №  9, pp. 24-29, 2010. (Ukrainian)