Methods of parametric sensitivity reduction of a field-oriented controlled drive

: pp. 47-54
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

The well-known problem of parametric sensitivity of a field oriented controlled induction motor drive is considered. The analytical method is offered for parametric sensitivity investigation. Using the results obtained with this method and results obtained by the mathematical models, conclusions are drawn and recommendations for the parametric sensitivity reduction are made. The effective method for the identification of IM parameters at a standstill is proposed. The optimal structures of Artificial Neural Networks are proposed for the flux identification in the FOC drive in which the parametric disturbances occure.

  1. B. Bose, Power electronics and AC drives. Engle­wood Cliffs, New Jersey, USA: Prentice-Hall, 1986.
  2. P. Vas, Vector control of AC-machines. Oxford Uni­versity Press, 1990.
  3. S.Peresada, A.Tilli, and A. Tonielli, “Theoretical and experimental comparison of indirect field-oriented controllers for induction motors”, IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 151-160, 2003.
  4. D.Casadei, F.Profumo, G.Serra, and A.Tani, “FOC and DTC: Two Viable Schemes for Induction Motors Torque Control”, IEEE Trans. on Power Electronics, vol. 17, no. 5, pp. 779 – 785, 2002.
  5. B.Robyns, P.Sente, H. Buyse, and F.Labrique, “In­fluence of digital current control strategy on the sensitivity to electrical parameter uncertainties of induction motor indirect field-oriented control”, IEEE Trans. on Power Electronics, vol. 14, no. 4, pp. 690-700, 1999.
  6. W. Yan and J. Moore, “On L2-Sensitivity minimization of linear state-space systems”, IEEE Trans. Circuits Syst. I, vol. 39, p. 641-648, 1992.
  7. I. Smetana, A. Losynsky, M. Klytta, F.Garbrecht, “Method for parameters identification of an asynchronous machine”, Tekhnichna elektro­dynamika. Proc. Conf. Power electronics and energy effectivness, Part-3, pp. 68-71, 2003. (Ukrainian)
  8. I. Smetana, A. Losynsky, M. Klytta, and F.Garbrecht, “Identification of induction motor parameters at standstill using svpwm inverter and DSP-TMS320”, Tekhnichna elektro­dynamika. Special issue on Proc. Conf. Power electronics and energy effectivness, 2005. (Ukrainian)
  9. I. Smetana and A. Lozynsky, “Application of the ANN for the identification accuracy increasing of the flux linkage in the vector control systems”, Elektromachynobuduvannia ta elektroobladnannia, vol. 63, pp. 7-16, Kyiv, Ukraine: Tekhnika, 2004. (Ukrainian)
  10. I. Smetana, A. Lozynsky, “Flux Identification in Field-Oriented Controlled Drive by Recurrent Neural Networks”, in Proc. ISC PELINCEC’2005, Warsaw, Poland, 2005.
  11. I. Smetana, A. Lozynsky, “The analysis of sensitivity of the vector control electric drive systems with cage rotor induction motor to parametric disturbances”, Elektroenerhetychni ta elektromekhanichni systemy, no. 479, pp. 172-179, Lviv, Ukraine: Lviv Polytechnic National University, 2003. (Ukrainian)
  12. M. Veles-Reyes, G. Verghese, “Robust decomposed algorithms for speed and parameter estimation in induction machines”, in Proc. IMACS-TCI, pp. 95-100, 1993.
  13. B. Raison, J. Arza, G. Rostaing, and J. Rognon, “Comparison of two extended observers for the resistance estimation of an induction mashine”, in Proc. Industry Application Conf., vol. 2, pp. 1330-1335, 2000. DOI: 10.1109/IAS.2000.882056
  14. J. Seok, S. Moon, and S. Sul, “Induction machine parameter identification using PWM inverter at standstill”, IEEE Trans. on Energy Conversion, vol. 12, no. 2, pp. 127-134, 1997.
  15. Toliyat H.A., Levi E., Raina M., “A Review of RFO Induction Motor Parameter Estimation Techniques”, IEEE Trans. on Energy Conversion, vol. 18, no. 2, pp. 271-283, 2003.
  16. O. Pinto, B. Bose, E. Borges da Silva, “A Stator-Flux-Oriented Vector-Controlled Induction Motor Drive With Space-Vector PWM and Flux-Vector Synthesis by Neural Networks”, IEEE Trans. on Industry Applications, vol. 37, no. 5, pp. 1308-1319, 2001.
  17. T. Orlowska-Kowalska, “Artificial neural networks in electrical drives control – a survey”, Archives of electrical engineering, vol. XLVII, no. 184-2, Warsaw, Poland, 1998.
  18. W. Lei, Z. Guo-Xing, and W. Qi-di, “Hopfield Neural Network Based Identification and Control of Induction Motor Drive System – Part I: Iden­tification”, in Proc. 14th World Congress of IFAC, pp. 265-296, 1999.
  19. V. Terekhov, D. Yefimov, and I. Tyukin, The simplest control systems. Moscow, Russia: Radiotekhnika, 2002. (Russian)