Теорія дрейфу материків – причини руху. Історичний огляд і спостереження

https://doi.org/10.23939/jgd2023.01.057
Надіслано: Квітень 30, 2023
1
Інститут гірничої та структурної механіки АН Чеської Республіки
2
Anect Praha
3
Сілезький університет Опава
4
Чеський технічний університет
5
Nad Palatou Praha

Теорія дрейфу материків була опублікована ще в 1912 році, але механізм і джерело енергії цього руху досі не з'ясовані. Загальноприйнята модель конвекційних течій в мантії в багатьох випадках суперечить таким спостереженням, як розпоширення дна океану, розтяг рифтів від потрійних точок на всі боки, більш-менш односторонній рух літосфери відносно мантії, та інші. У першій частині статті показано еволюцію поглядів на цю проблематику, а також дані вимірювань, які документують важливу роль позаземних джерел енергії для руху літосферних плит у добовому, річному та довгостроковому кліматичних циклах. У другій частині статті буде викладена вся теорія механізму руху літосферних плит, базуючись на накопиченні енергії, що надходить від Сонця, в породах кори, храповому механізмі та проникненні термопружної хвилі  з земної поверхні через всю кору.

  1. Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., ... & Borexino Collaboration. (2020). Comprehensive geoneutrino analysis with Borexino. Physical Review D, 101(1), 012009. https://doi.org/10.1103/PhysRevD.101.012009
  2. Allègre, C., Manhès, G., & Lewin, É. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth and Planetary Science Letters, 185(1-2), 49-69. https://doi.org/10.1016/S0012-821X(00)00359-9
  3. Anderson, Don L., & Dziewonski, A. M. (1984). The Earth's interior: A new frontier and a new challenge for earth scientists: in Global Change, no. 5, eds. T. F. Malone and J. G. Roederer, ICSU Press, p. 345-353. https://authors.library.caltech.edu/45511/1/Anderson_1985p195.pdf
  4. Anderson, D. L. (1988). Temperature and pressure derivatives of elastic constants with application to the mantle, Jour. Geophys. Res., 93, p. 4688-4700. https://doi.org/10.1029/JB093iB05p04688
  5. Anderson, D. L. (2000). The thermal state of the upper mantle; No role for mantle plumes, Geophysical Research Letters, 27(22), 3623-3626. https://doi.org/10.1029/2000GL011533
  6. Belousov, V. V. (1962). Basic problems in geotectonics, McGraw-Hill, New York.
  7. Benioff, H. (1949). Seismic evidence for the fault origin of oceanic deeps. Bulletin of the Geological Society of America. 60 (12): 1837-1866. https://doi.org/10.1130/0016-7606(1949)60[1837:SEFTFO]2.0.CO;2
  8. Berger, J. & Wyatt, F. (1973). Some observations on earth strain tides in California, Phil. Trans. Roy. Soc. London, Ser. A, 274, 67-277. https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1973.0052
  9. Berger, J. (1975). A Note on Thermoelastic Strains and Tilts, J. Geophys. Res., 80, 274-277. https://doi.org/10.1029/JB080i002p00274
  10. Braitenberg, C., Romeo, G., Taccetti, Q., & Nagy, I. (2006). The very-broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): Secular term tilting and the great Sumatra-Andaman islands earthquake of December 26, 2004. Journal of Geodynamics, 41(1-3), 164-174. https://doi.org/10.1016/j.jog.2005.08.015
  11. Brázdil, R., et al. (1988): Introduction to the planet Earth study. SPN, Praha, 368 pp. (in Czech)
  12. Brimich, L. (2006). Strain measurements at the Vyhne tidal station. Contributions to geophysics and geodesy, Vol. 36/4. https://journal.geo.sav.sk/cgg/article/view/337
  13. Buffett, B. A. (2002). Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophysical Research Letters, 29(12), 7-1. https://doi.org/10.1029/2001GL014649https://doi.org/10.1029/2001GL014649
  14. Carey, W. S. (1958). The tectonic approach to continental drift. In: S. W. Carey (ed.): Continental drift – A symposium. University of Tasmania, Hobart, 177-363 (expanding Earth from p. 311 to p. 349).
  15. Carey, S. W. (1975). The Expanding Earth-an essay review, Earth Sci. Rev.,11, 105–143. https://doi.org/10.1016/0012-8252(75)90097-5
  16. Carey, S. W. (1976). The expanding Earth. Elsevier, Amsterdam, pp. 488.
  17. Crespi, M., Cuffaro, M., Doglioni, C., Giannone1, F. & Riguzzi, F. (2007). Space geodesy validation of the global lithospheric flow. Geophys. J. Int., 168, 491–506. https://doi.org/10.1111/j.1365-246X.2006.03226.x
  18. Croll, J. G. A. (2019). Phanerozoic climate and vertical tectonic cycles. UCL Press. https://doi.org/10.14324/111.444/000009.v1. p 1-7. https://www.researchgate.net/publication/331082713_Phanerozoic_Climate_and_Vertical_Tectonic_Cycles
  19. Davies, J. H., & Davies, D. R. (2010). Earth's surface heat flux. Solid Earth, 1(1), 5-24. https://doi.org/10.5194/se-1-5-2010, 2010.
  20. Denis, C., Schreider, A.A., Varga, P., & Zavoti, J. (2002). Despinning of the Earth rotation in the geological past and geomagnetic and geomagnetic paleointensities. Journal of Geodynamics, 34, 667-685. https://doi.org/10.1016/S0264-3707(02)00049-2
  21. Doglioni, C. (1993). Geological evidence for a global tectonic polarity. Journal of the geological society, London, 150(5), 991-1002. https://doi.org/10.1144/gsjgs.150.5.0991
  22. Doglioni, C., Carminati, E. & Bonatti, E. (2003). Rift asymmetry and continental uplift. Tectonics, 22(3), 1024, 8-1 – 8-13. https://doi.org/10.1029/2002TC001459.
  23. Doglioni, C., Green, D.H. & Mongelli, F. (2005). On the shallow origin of hotspot and the westward drift of the lithosphere. Geological Society of America Special Paper, 388, 735-749. https://doi.org/10.1130/0-8137-2388-4.735
  24. Doglioni, C. (2014). Asymmetric Earth: mechanisms of plate tectonics and earthquakes. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Scienze Fisiche e Naturali, 9–27, https://doi.org/10.4399/97888548717171.
  25. Domeier, M, & Torsvik, T. H. (2014). Plate tectonics in the late Paleozoic. Geoscience Frontiers, 5(3), 303-350. https://doi.org/10.1016/j.gsf.2014.01.002
  26. Dziewonski, A. M., & Anderson, Don L., (1984). Seismic tomography of the Earth's interior: Am. Scientist, 72(5), 483-494. https://www.jstor.org/stable/27852863.
  27. Foulger, G. R.  (2010). Plates vs Plumes: A Geological Controversy. Wiley-Blackwell. 328 pp.
  28. Gando A. et al. (KamLAND Collaboration, 45 co-authors) (2013). Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88 (3), Article 033001. https://doi.org/10.1103/PhysRevD.88.033001
  29. Garai, J. (1997). The driving mechanism of plate tectonics, Eos, Transactions, AGU, 78 (46) Fall Meet. Suppl., pp. 712. https://doi.org/10.48550/arXiv.0709.1303
  30. Garai, J. (2007) Global coupling at 660 km is proposed to explain plate tectonics and the generation of the earth’s magnetic field. arXiv preprint arXiv:0709.1303. https://doi.org/10.48550/arXiv.0709.1303
  31. Gerdes A., Wörner G., & Henk, A. (2000). Postcollisional granite generation and HT-HP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. Journal of the Geological Society, 157: 577-587. https://doi.org/10.1144/jgs.157.3.577
  32. Grillo, B., Braitenberg, C., Devoti, R. & Nagy, I. (2011). The study of karstic aquifers by geodetic measurements in bus de la Genziana station – Cansiglio plateau (northeastern Italy). Acta Carsologica, 40/1, 161–173, Postojna 2011. https://doi.org/10.3986/ac.v40i1.35
  33. Heaton, T.H. (1975). Tidal Triggering of Earthquakes. Geophysical Journal International, 43(2), 307-326, https://doi.org/10.1111/j.1365-246X.1975.tb00637.x
  34. Heirtzler, J. R., Le Pichon, X., & Baron, J. G. (1966, June). Magnetic anomalies over the Reykjanes Ridge. In Deep Sea Research and Oceanographic Abstracts, 13(3), 427-443). Elsevier.. https://doi.org/10.1016/0011-7471(66)91078-3
  35. Holmes A. (1928). Radioactivity and Earth movements. Transactions of the Geological Society of Glasgow. 18, 559-606.
  36. Holmes, A. (1939). Radioaktivity and the Earth movement. Trans. Geol. Soc. Glasg., 28, 559-606.
  37. Holmes, A. (1944). Principles of Physical Geology. (Edinburgh: Thomas Nelson and Sons, 1944 and New York: Ronald Press, 1945).
  38. Hvožďara, M., Brimich, L., & Skalský, L. (1988). Thermo-elastic deformations due to annual temperature variation at the tidal station in Vyhne. Studia Geophysica et Geodaetica, 32(2), 129-135. https://doi.org/10.1007/BF01637575
  39. Illis, B. (2009). Searching the PaleoClimate Record for Estimated Correlations: Temperature, CO2 and Sea Level. Watts up with that?
  40. Jeffreys, H. (1974). Theoretical aspects of continental drift. In Kahle, pp. 395-405.
  41. Kalenda, P., Skalský, L., & Málek, J. (2005). Effect of earth tides on California seismicity. Seminar MFF UK Praha, 22.4.2005. (in Czech)
  42. Kalenda, P., Neumann, L., Málek, J., Skalský, L., Procházka, V., Ostřihanský, L., Kopf, & T., Wandrol, I. (2012). Tilts, global tectonics and earthquake prediction. SWB, London, 247pp. http://seismonet.com/media_files/1/POL_Tilts_Global%20Tectonics%20and%20Earthquake%20Prediction.pdf
  43. Kalenda, P., & Neumann, L. (2014). The tilt of the elevator shaft of bunker Skutina. Transactions of the VŠB. Technical University of Ostrava, Mechanical Series, 1(LX), 55-62. http://transactions.fs.vsb.cz/2014-1/1978.pdf
  44. Kalenda, P., Wandrol, I., Holub, K. & Rušajová, J. (2015). The possible explanation of seasonal and annual variations of secondary microseisms. Terrestrial Atmospheric and Oceanic Sciences, 26(2), 103-109. https://pdfs.semanticscholar.org/96c7/39372bb91dde027a506f02d119556c32ba...
  45. Kárník,V., & Tobyáš, V. (1961). Underground measurements of the seismic noise level. Studia Geophysica et Geodaetica, 5(3), 231-236. https://doi.org/10.1007/BF02585381
  46. Kery, P., & Vine, F.(1996). Global Tectonics, Blackwell Science. Surveys in Geophysics, 19(1).
  47. Kutterolf, S., Jegen M., Mitrovica J. X., Kwasnitschka T., Freundt A., &  Huybers P. J. (2013). A detection of Milankovitch frequencies in global volcanic activity. Geology, 41(2), 227-230; https://doi.org/10.1130/G33419.1
  48. Lee K.K.M., Steinle-Neumann, G., & Jeanloz, R (2004). Ab-initio high-pressure alloying of iron and potassium: Implications for the Earth's core. Geophysical Research Letters, 31(11), Art. No. L11603. https://doi.org/10.1029/2004GL019839
  49. Melchior, P. & Skalský, L. (1969). Station: Příbram/Belg. Mesures faites dans les composantes Nord-Sud et Est-Ouest avec les pendules horizontaux VN No. 76 et No.77 en 1966, 1967 et 1968. Observatorie Royal de Belgique.
  50. McDonough W. F., & Sun S. (1995). The composition of the Earth. Chemical geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  51. Munk, W., & Wunsch C. (1998). Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12), 1977-2010. https://doi.org/10.1016/S0967-0637(98)00070-3
  52. Neumann, L. (2005). Gravity dynamics and gravity noise on the Earth surface. 116 pp. http://www.dynamicgravity.org/p1/doc/AppendixB-Results.pdf
  53. Neumann, L., & Kalenda, P. (2010). Static vertical pendulum – apparatus for in-situ relative stress measurement. In: Rock stress and earthquakes (F.Xie ed.), 255-261. https://onepetro.org/ISRMISRS/proceedings-abstract/ISRS10/All-ISRS10/38660
  54. Ostřihanský, L. (2004). Plate movements, earthquakes and variations of the Earth's rotation. Acta Universitatis Carolinae – Geologica, 48(1):89-98.
  55. Ostřihanský, L. (2012). Earth's rotation variations and earthquakes 2010-2011. Solid Earth Discussions, 4(1): 33-130. https://doi.org/10.5194/sed-4-33-2012.
  56. Pratt, D. (2000). Plate Tectonics: A Paradigm Under Threat. Journal of Scientific Exploration, 1493), 307-352, 2000). http://www.portalgeobrasil.org/geo/mat/terra/14.3_pratt.pdf
  57. Procházka V. (2014). Composition of atmosphere and the climate in ancient past of the Earth: What is the relation with movement of lithospheric plates (discussion). Acta Mus. Meridionale, Sci. Nat. 53, 46-51.
  58. Rajlich P. (2004). Geology between the expansion of the Earth and Bohemia. 234 pp.(in Czech).
  59. Ransford, G. A. (1982). The accretional heating of the terrestrial planets: a review, Physics of the Earth and Planetary Interiors, 29(3-4), 209-217. https://doi.org/10.1016/0031-9201(82)90012-7
  60. Richard, Y., Doglioni, C. & Sabedini, R. (1991). Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. Journal of Geophysical Research: Solid Earth, 96(B5), 8407-8415. https://doi.org/10.1029/91JB00204
  61. Rousseau, A. (2005). A new global theory of the Earth's dynamics: a single cause can explain all the geophysical and geological phenomena. http://hal.archivesouvertes. fr/docs/00/02/94/00/PDF/global-geodyn.pdf.
  62. Rudnick, R. L. & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
  63. Sammon L. G., & McDonough W. F. (2022). Quantifying Earth’s radiogenic heat budget. Earth Planet. Sci. Lett. 593, 117684, https://doi.org/ 10.1016/j.epsl.2022.117684.
  64. Saunders, A. D., & Tarney, J. (1984). Geochemical characteristics of basaltic volcanism within back-arc basins. Geological Society, London, Special Publications, 16(1), 59-76. https://doi.org/10.1144/GSL.SP.1984.016.01.05
  65. Scalera, G., & Jacob, K. H. (2003). Why expanding Earth? A book in honour of Ott Christoph Hilgenberg. INGV Publisher, Roma, 465 pp. https://ci.nii.ac.jp/ncid/BA65189019?l=ja
  66. Scoppola, B., Boccaletti, D., Bevis, M., Carminati, E. & Doglioni, C., (2006). The westward drift of the lithosphere: A rotational drag? Geological Society of America Bulletin, 118(1-2), 199-209.
  67. Scotese, Ch. R. (2003). Paleomap project. http://www.scotese.com/climate.htm.
  68. Scotese, Ch. R. (2009). Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geological Society, London, Special Publications, 326, 67-83, https://doi.org/10.1144/SP326.4
  69. Schubert, G., Turcotte, D. L., & Olson. P. (2001). Mantle Convection in the Earth and Planets. [s.l.]: Cambridge University Press, 2001. ISBN 052135367X.
  70. Sheth, H. C. (2011). Book reviews: Foulger 'Plates_vs_Plumes_A_Geological_Controversy“.  BOOK REVIEWS. Current Science, Vol. 100, No. 1, 10 January 2011 , 122-124.
  71. Stejskal, V., Skalský, L. & Kašpárek, L. (2007). Results of two-years' seismo-hydrological monitoring in the area of the Hronov-Poříčí Fault Zone, Western Sudetes. Acta Geodynamica et Geomaterialia, 4(4), 59-76. https://www.irsm.cas.cz/materialy/acta_content/2007_04/5_Stejskal.pdf
  72. Tanimoto T., Lay T. (2000). Mantle dynamics and seismic tomography. Proceedings of the National Academy of Science. Vol. 97, No. 23, pp. 12409–12410. https://doi.org/10.1073/pnas.210382197. PMID 11035784.
  73. Taylor S. R., & McLennan S. M. (1985). The continental crust: its composition and evolution. – Blackwell, Oxford, 312 pp. https://www.osti.gov/biblio/6582885
  74. Varga, P., Gambis, D., Bizouard, Ch., Bus1, Z. & Kiszely, M. (2005). Tidal influence through LOD variations on the temporal distribution of earthquake occurrences. Proc. of Conferrence „Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions“, Warszawa. https://syrte.obspm.fr/jsr/journees2005/pdf/s3_09_Varga.pdf
  75. Vine, F. J., & Mathews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947-949. http://www.muststayawake.com/SDAG/library/Science/BirthOfPlateTectonicsT...
  76. Vine, F. J. (1966). Sea-floor spreading of the ocean floor: new evidence. Science, 154, 1405-1415. https://doi.org/10.1126/science.154.3755.1405
  77. Wandrol, I. (2017). Modelling the mechanical behaviour of the Earth's crust. Disertation, VŠB-TU Ostrava, 2017 (in Czech??).
  78. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta. 59. 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2.
  79. Wegener, A. (1912), Die Entstehung der Kontinente, Peterm. Mitt.: 185-195, 253-256, 305-309. https://doi.org/10.1007/BF02202896
  80. Zátopek, A. (1941). About seismic unrest. ŘH, 22 (1941), 59, 81. (in Czech)
  81. Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., & Twickler, M. S. (1996). A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research, 45(2), 109-118. https://doi.org/10.1006/qres.1996.0013