Mineralogical and geodynamical conditions of transformation of peridotites from ophiolites in the Marmarosh zone roc

2016;
: pp. 71 – 83
https://doi.org/10.23939/jgd2016.02.071
Received: October 25, 2016
1
Ivan Franko National University of Lviv
2
lviv Ivan Franko national university
3
Ivan Franko national university of Lviv
4
Ivan Franko national university of lviv

Purpose. The purpose of our research is to reconstruct geodynamic condition of transformation of Marmaroch zone peridotites. This investigation is based on the study of rock petrography, chemical composition of minerals and recognizing of thermodynamic condition of mineral formation. Methodology. The occurrences of peridotites bodies in the basin of Mala Ugolka and Velyka Ugolka river have been studied. Laboratory study includes petrographic microscopic observations and analysis of mineral composition by using scanning electron microscope equipped with an energy dispersive spectrometer. Results. Ophiolites of the Marmaroch zone rocks are represented by cataclastic varieties of lherzolites and harzburgites. Rocks are characterized by the following minerals: olivine, orthopyroxene, clinopyroxene, amphibole, talc, chlorite, serpentine, magnetite, spinel. Based on microanalitycal data, the new varieties of spinel in peridotites have been recognized for the first time. According to Pavlov’s diagram (Pavlov, 1949), the first group of spinel can be attributed to pycotite, the second one to chrom-pycotite. Two equilibrium mineral association in ophiolite peridotites were originally distinguished: first – olivine+spinel+ orthopyroxene+clinopyroxene, second – spinel +amphibole+talc. In the context of temperature and pressure of mineral transformation, some mineral association have been analysed. For spinel and olivine-spinel geothermometer P-T parameters for first mineral association are estimated in a range – 900–1290 °С, ~ 15 kbar; for second mineral association – 430–450 °С, 4,0–4,5 kbar. Thermodynamic conditions of transformation of peridotites are displayed in the degree of partial melting and spreading velocity. First mineral association shows melting degree not exceed 14 %, that is the characteristic of slow-spreading peridotites; second mineral association shows 25 %, that is the characteristic of high-spreading peridotites. First stage of peridotite formation can be related to the slow-spreading condition in spinel peridotite zone of oceanic crust. On the second stage, peridotites are changed in above-subduction zone under condition of back-arc spreading. Scientific novelty. Application of scanning electron microscope equipped with an energy dispersive spectrometer enabled to specify the mineral content and petrotypes of peridotites, to distinguish two equilibrium mineral association, to determine thermodynamic conditions of formation and transformation of peridotites from Marmaroch rocks zone. Original model of multistage formation of peridotites in the Ukrainian Carpathians is proposed. Practical meaning. The study of substantial and geodynamic features of peridotite evolution is topical from point of view of problems, that concern Earth crust formation and formation of folded region lithosphere (based on the example of the Ukrainian Carpathians). The obtained results can be bused to forecast estimation of ore potential, related to the studied peridotite complexes

1. Antsiferova T. N. Deformatsionnye i reaktsionnye (rasplav/poroda) izmeneniya sostava mineralov restitovykh giperbazitov ofiolitov (Vostochnogo Sayana): petrogeneticheskie aspekty [Deformational and reactionary (melt/rock) changes in composition of minerals of restitic ophiolite hyperbasites (East Sayan): petrogenetic aspects]. Geologiya i poleznye iskopaemye. Izv. Tomskogo politekh. un-ta [Geology and Economic Minerals, News of Tomsk Politechnical University], 2008, Vol. 312, no.1, pp. 21–25.
2. BarnesS. J. & Roeder P. L. The range of spinel compositions in terrestrial mafik and ultramafic rock. Journal of Petrology. Oxford University Press. Vol. 42, n. 12, 2001, pp. 2279–2302.
https://doi.org/10.1093/petrology/42.12.2279
4. Chashchukhin I. S., Votyakov S. L., Pushkarev Ye. V., Anikina Ye. V., Uymin S. G. O temperature stanovleniya ultramafitov Platinonosnogo poyasa Urala [About formation temperature of the ultramafites of Uralian platinum belt]. Yezhegodnik 1999, In-ta geologii i geokhimii UrO RAN [Yearbook-1999 of Geol. and Geochem. Institute of Uralian Branch of Russ. Acad. Scienc], Yekaterinburg, 2000, pp. 210–216.
5. Gerya T. V. P-T trendy i model formirovaniya granulitovykh kompleksov dokembriya [P-T trends and formation model of Precambrian granulite complexes]. Avtoref. dis. doktora. geol.-min. nauk [Autoabstract of doctoral dissertation in geological and mineralogical sciences], Moscow, 1999, 49 p.
6. Gnilko O. M. Gnilko S. R., Generalova L. V. Formirovanie struktur utesovykh zon i mezhutesovogo flisha Vnutrennikh Ukrainskikh Karpat – rezultat sblizheniya i kollizii mikrokontinentalnykh terreynov[Structure formation of cliff zones and intercliff flysh of Inner Ukrainian Carpathian – result of convergence and ] collision of terrane]. Vestn. S.-Peterb. un-ta [Bulletin of St. Petersburg University], 2015, ser. 7, iss. 2, pp. 4–24.
7. Godovikov A. A. Mineralogiy [Mineralogy]. Moscow: Nedra, 1983, 647 p.
8. Krasnova Ye. A. Magmaticheskaya i metamorficheskaya evolyutsiya mantiynogo substrata litosfery severo-zapadnoy chasti Tikhogo okeana [Magmatic and Metamorphic evolution of mantle substrat of Nord-West Pacific]. Avtoref. dis. kand. geol.-min. nauk. [Autoabstract of candidate dissertation in geological and mineralogical sciences], Moscow, 2014, 26 p.
9. Lyashkevich Z. M., Medvedev A. P., Krupskiy Yu. Z., Varichev A. S., Timoshchuk V. R., Stupka O. O. Tektono-magmaticheskaya evolyutsiya Karpat. [Tectonic and Magmatic evolution of Carpathian]. Kyiv: Nauk. dumka, 1995, 132 p.
10. Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawtorne F. C., Kato A., Kisch h. J., Krivovschev V. G., Linthout K., Laird J., Mandarino J. A., Maresch V. W., Nikel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Wittaker E. J. W., Youzhi G. Nomenklatura amfibolov: doklad podkomiteta po amfibolam komissii po novym mineralam i nazvaniyam mineralov mezhdunarodnoy mezhdunarodnoy mineralogicheskoy assotsiatsii (KNMNM MMA) [Nomenclature of Amphiboles: Report of the Subcommittee on Amphidoles of the commission on new minerals and mineral names (CNMMN IMA)]. Zap. Vseros. mineral. ob-va [Proc. Rus. Min. Soc.], 1997, no. 6, pp. 82–102.
11. Pavlov N. V. Khimicheskiy sostav khromshpinelidov v svyazi s petrograficheskim sostavom porod ultraosnovnykh intruzivov [Chemical composition of chromspinels with regard to petrographic rock composition of ultrabasic intrusions]. Trudy Geologicheskogo instituta RAN [Proceedings of the Geological Institute of the Rus. Acad. of Scienc.], 1949, is. 103, no. 3, 91 p.
13. Ponomarev G. P., Puzankov M. Yu. Raspredelenie porodoobrazuyushchikh elementov v sisteme osnovnoy-ultraosnovnoy rasplav–shpinel, olivin, ortopiroksen, klinopiroksen, plagioklaz po eksperimentalnym dannym: geologicheskoe prilozhenie [Spreading of rock-forming elements in the system of basic-ultrabasic melt (spinel, olivine, orthopyroxene, clinopyroxene, plagioclase) according to the experimental date: geological application]. M.: IViS DVO RAN [Moscow: Institute of Vulcanology and Seismology Far Eastern Branch RAS], 2012, 668 p.
14. Radomskaya T. A. Mineralogiya i geokhimiya Kindashskogo platinoidno-medno-nikelevogo mestorozhdeniya (V. Sayan) [Mineralogy and geochemistry of the Kingash platinum-cooper-nickel deposits]. Avtoref. dis. kand. geol.-min. nauk [Autoabstract of candidate dissertation in geological and mineralogical sciences], Irkutsk, 2012, 23 p.
16. Tretyak K. R., Maksymchuk V. Yu, Kutas R. I at al. Suchasna heodynamika i heofizychni polya Karpat ta sumizhnykh terytoriy [Modern geodynamics and geophysical fields of the Carpathians and the adjacent territories]. Lviv: Lviv Polytechnic Publishing House, 2015, 420 p. (in Ukrainian).
17. Usal I., Ersoy E. Y., Karsli O., Dilek Y., Sadiklar M. B., Ottley C. J., Tiepolo M., Meisel T. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics. Litos 132–133, 2012, pp. 50–69.
https://doi.org/10.1016/j.lithos.2011.11.009