The paper analyzes the recent trends of horizontal and vertical displacements of Ukraine's territory based on the GeoTerrace and System.Net GNSS network data. This includes the construction of relevant movement maps and the selection of deformation zones of the upper crust. The object of research is horizontal and vertical deformations of the upper crust. The goal is to identify and analyze deformation zones in Ukraine's territory. The source data includes the horizontal and vertical displacement rates of GNSS stations from the GeoTerrace network for 2018 to 2023 and the System.Net network for 2021 to 2023. This data is complemented by known tectonic map of the territory, sourced from the National Atlas of Ukraine, along with descriptive materials. The methodology includes comparison and analysis of recent deformations of the Earth's crust in the region with its known tectonic structure. New maps of recent horizontal displacement velocities of Ukraine's upper crust have been created, along with vertical displacement velocities of GNSS stations. These studies indicate that the recent horizontal movements within Ukraine are complex and closely linked to the known tectonic structure. Additionally, these movements were compared with regional model values derived from the ITRF-2020 model. Most GNSS stations have vertical subsidence trend, likely due to denudation processes. This study outlines the recent movements of the Earth's crust, however, a detailed interpretation should incorporate additional data from specialists in the Earth sciences. When observed over extended time intervals, the measured velocities of GNSS stations will help identify the spatial distribution characteristics of Earth's crust movement across Ukraine. This, in turn, will facilitate the development of regional geodynamic models for specific tectonic structures or regions, including Ukraine as a whole. Such models hold practical significance for advancing accurate navigation through precise positioning using networks of active GNSS stations.
- Vysotenko R. O. (2010). Determining the rate of velocities of permanent stations, and periodically existing settlements UPN GNSS based on satellite geodetic measurements 1995–2007 period Modern achievements of geodetic science and production, 1 (19). Lviv. 2010. С. 80-86. (in Ukrainian). https://vlp.com.ua/taxonomy/term/3164
- Novikova, O., Palamar, A., & Petkov, S. (2020, April). Operator service of GNSS networks of Ukraine. In The 12 th International scientific and practical conference «Impact of modernity on science and practice», Edmonton, Canada. (in Ukrainian). https://isg-konf.com/wp-content/uploads/2020/04/XII-Conference-13-14-Edm... (In Ukrainian)
- Orlyuk, M., & Ishchenko, M. (2019a) Analysis of Earth's surface deformation according to the Global Navigation Satellite Systems data including the newest movements of the territory of Ukraine. Reports of the National Academy of Sciences of Ukraine 8, 59-68. (in Ukrainian). https://doi.org/10.15407/dopovidi2019.08.059
- Orlyuk, M., & Ishchenko, M. (2019b) Comparative analysis of modern deformation and the newest motions of the Earth surface in the territory of Ukraine. Geofizicheskiy zhurnal 4 (41), 161-181. (in Ukrainian). https://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381
- Tretyak, K. & Vovk, A. (2014). Results of determination of horizontal deformation of the Earth crust of Europe according to the data of GNSS observations and their relation with the tectonics structure. Geodynamics, 1(16), 21-33, (in Ukrainian). https://doi.org/10.23939/jgd2014.01.021
- Ukrainian GNSS network (n.d.) Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Retrieved 01.09.2024, from: http://gnss.mao.kiev.ua/?q=node/1
- National Atlas of Ukraine (2007). National Academy of Sciences of Ukraine, Institute of Geography, State Service of Geodesy, Cartography and Cadastre ; editor-in-chief L. Rudenko ; editorial board chairman B. Paton. 435 p. ISBN 978-966-475-067-4.
- Brusak, I., & Tretyak, K. (2020, December). About the phenomenon of subsidence in continental Europe in December 2019 based on the GNSS stations data. In International Conference of Young Professionals «GeoTerrace-2020» (Vol. 2020, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20205717
- Brusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3013
- Brusak, I., Babchenko, V., Savchuk, N., Marchuk, V., Shkvarok, Y., & Turianytsia, M. (2024). New challenges for exploitation of continuously operating reference GNSS stations during hostilities. Case study of Ukraine. Geodesy Cartography and Aerial Photography, (99), 28-37. https://doi.org/10.23939/istcgcap2024.99.028
- Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS software version 5.2. https://doi.org/10.7892/boris.72297
- Davis, J. L., Wernicke, B. P., & Tamisiea, M. E. (2012). On seasonal signals in geodetic time series. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011JB008690
- Desai, S., Bertiger, W., & Gross J. (2016). Introduction to JPL's GPS time series. California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
- Devoti, R., D’Agostino, N., Serpelloni, E., Pietrantonio, G. et al. (2017). A combined velocity field of the Mediterranean region. Ann. Geophys., 60, 2, 2–17. https://doi.org/10.4401/ag-7059
- Doskich, S. (2021). Deformations of the land crust of the Carpathian region according to the data of GNSS observation. Geodesy Cartography, and Aerial Photography, 93(1), 35-41. https://doi.org/ 10.23939/istcgcap2021.93.035
- Doskich, S., Savchuk, S., & Dzhuman B. (2023). Determination of horizontal deformation of the Earth's crust on the territory of Ukraine based on GNSS measurements. Geodynamics, 2(35), 89-98. https://doi.org/10.23939/jgd2023.02.089
- Esposito, A., Pietrantonio, G., Bruno, V., Anzidei, M., Bonforte, A., Guglielmino, F., ... & Serpelloni, E. (2015). Eighteen years of GPS surveys in the Aeolian Islands (southern Italy): open data archive and velocity field. Ann. Geophys, 58(4), S0439. https://doi.org/10.4401/ag-6823
- GAGE Plate Motion Calculator URL: https://www.unavco.org/software/geodetic-utilities/plate-motion-calculat... (дата звернення: 01.09.2024).
- Gruszczynska, M., Klos, A., Rosat, S. and Bogusz, J. (2017). Deriving common seasonal signals in GPS position time series by using Multichannel Singular Spectrum Analysis. Acta Geodyn. Geomater., 14, 3 (187), 273–284. https://doi.org/10.13168/ AGG.2017.0010
- Ishchenko, M. (2016). Determination of velocities of East European stations from GNSS observations at the GNSS data analysis center of the main astronomical observatory, national academy of sciences of Ukraine. Kinematics and Physics of Celestial Bodies, 32(1), 48–53. https://doi.org/10.3103/s0884591316010049
- Ishchenko, M. (2018). Investigation of deformations of the earth crust on the territory of Ukraine using a GNSS observations. Artificial Satellites, 53(3), 117-126. https://doi.org/10.2478/arsa-2018-0009
- Kowalczyk, K., Kowalczyk, A. M., & Chojka, A. (2020). Modeling of the vertical movements of the earth's crust in Poland with the co-kriging method based on various sources of data. Applied Sciences, 10 (9), 3004. https://doi.org/10.3390/app10093004
- Khoda O. (2024). Estimation of Velocities of Ukrainian GNSS Stations in the IGb08 Reference Frame. Kinematics and Physics of Celestial Bodies, 40(5), 257-268.. https://doi.org/10.3103/S0884591324050039
- Maciuk, K., Nistor, S., Brusak, I., Lewińska, P., & Kudrys, J. (2023). Reference clock impact on GNSS clock outliers. Journal of Applied Geodesy, 17(4), 391-396. https://doi.org/10.1515/jag-2023-0007
- Marchenko, O., Perii S., Lompas O., Holubinka, Yu., Kramarenko, S., & Salawu, A. (2019). Determination of the horizontal strain rates tensor in Western Ukraine. Geodynamics, 2(27), 5-15. https://doi.org/10.23939/jgd2019.02.005
- Naumowicz B., Kowalczyk, K., Pelc-Mieczkowska, R. (2024). PPP solution-based model of absolute vertical movements of the Earth's crust in Poland with consideration of geological, tectonic, hydrological and mineral information. ESS Open Archive. https://doi.org/10.22541/essoar.173046842.26349555/v1
- Pelc‑Mieczkowska, R. (2020). Preliminary Analysis of the Applicability of the GPS PPP Method in Geodynamic Studies. Geomatics and Environmental Engineering, 14(4), 57-68. https://doi.org/10.7494/geom.2020.14.4.57
- Piña‐Valdés, J., Socquet, A., Beauval, C., Doin, M. P., D’Agostino, N., & Shen, Z. K. (2022). 3D GNSS velocity field sheds light on the deformation mechanisms in Europe: Effects of the vertical crustal motion on the distribution of seismicity. Journal of Geophysical Research: Solid Earth, 127(6), e2021JB023451. https://doi.org/10.1029/2021JB023451
- Savchyn, I., & Bilashuk, A. (2023, October). Differentiation of Recent Geodynamic Processes within the Carpathian Mountains Based on GNSS Data. In International Conference of Young Professionals «GeoTerrace-2023» (Vol. 2023, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2023510011
- Savchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola Strait—Lemaire Channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia, 18(2), 202, 253–265, 2021. https://doi.org/10.13168/AGG.2021.0018
- Savchuk, S., & Doskich, S. (2017). Monitoring of crustal movements in Ukraine using the network of reference GNSS-stations. Scientific journal “Geodynamics”, 2(23), 7–13. https://doi.org/10.23939/jgd2017.02.007
- Siejka, Z. (2017). Evaluation of integration degree of the ASG-EUPOS polish reference networks with Ukrainian GeoTerrace network stations in the border area. Artificial Satellites, 52(3), 71. https://doi.org/10.1515/arsa-2017-0007
- Tretyak, K., & Brusak, І. (2020). The research of interrelation between seismic activity and modern horisontal movements of the Сarpathian-Balkan region based on the data from permanent GNSS stations. Geodynamics, 1(28), 5-18. https://doi.org/10.23939/jgd2020.01.005
- Tretyak, K., & Brusak, I. (2021). Method for detecting short-term displacements of the Earth’s surface by statistical analysis of GNSS time series. Geodesy, Cartography, and Aerial Photography, 93(1), 27-34. https://doi.org/10.23939/istcgcap2021.93.027
- Tretyak, K., & Brusak, І. (2022). Modern deformations of Earth crust of territory of Western Ukraine based on “GEOTERRACE” GNSS network data. Geodynamics, 1(32), 16-25. https://doi.org/10.23939/jgd2022.02.016
- Tretyak, K., Brusak, І., Bubniak, І., & Zablotskyi, F. (2021a). Impact of non-tidal atmospheric loading on civil engineering structures. Geodynamics 2(31), 16–28. https://doi.org/10.23939/jgd2021. 02.016
- Tretyak, K., Korliatovych, T., & Brusak, I. (2021b). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP-1 dam. In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3012