The use of hybrid data: PsInSAR, GNSS and levelling in the development of a modern model of vertical movements of the Earth's crust in Poland

https://doi.org/10.23939/jgd2025.02.005
Received: August 01, 2025

Cite this as

Naumowicz, B., Wieczorek, B., & Kowalczyk, K. (2025). The use of hybrid data: PsInSAR, GNSS and levelling in the development of a modern model of vertical movements of the Earth's crust in Poland. Geodynamics, 2(39), 5-15. https://doi.org/10.23939/jgd2025.02.005

1
Department of Geoinformation and Cartography, University of Warmia and Mazury in Olsztyn
2
Department of Geoinformation and Cartography, University of Warmia and Mazury in Olsztyn
3
Uniwersity of Warmia and Mazury in Olsztyn, Faculty of Geodesy, Geospatial and Civil Engineering, Institute of Geoinformation and Cartography

The aim of this article is to present the first model in Poland of contemporary relative vertical movements of the Earth's crust, based on the integration of vertical movements determined from three sources: GNSS measurements (ASG-EUPOS), permanent PsInSAR scatterers from EGMS products, and double precise levelling measurements. Due to differences in the temporal and spatial resolution of the data, it was necessary to develop a consistent integration methodology. In the data merging process, an affine transformation was used to convert absolute vertical movements (GNSS and PsInSAR) to a relative system consistent with the levelling data. The InSAR data came from EGMS L2a products (after decomposition into a vertical component) and EGMS L3. The analysis showed that the optimal buffer radius for InSAR data in the study of micro-areas around GNSS stations is 0.3 km, and the use of the median as a representative value is statistically justified. The average transformation error for a single point was approximately 0.20 mm/yr. The final model was developed using the local polynomial method, and the results obtained provide a basis for further geodynamic studies and may be used in civil engineering and geological risk management.

  1. Altamimi, Z., Sillard, P., & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research: Solid Earth, 107(B10). https://doi.org/10.1029/2001JB000561
  2. Ballu, V., Gravelle, M., Wöppelmann, G., de Viron, O., Rebischung, P., Becker, M., & Sakic, P. (2019). Vertical land motion in the Southwest and Central Pacific from available GNSS solutions and implications for relative sea levels. Geophysical Journal International, 218(3), 1537–1551. https://doi.org/10.1093/gji/ggz247
  3. Bednarczyk, M., Kowalczyk, K., & Kowalczyk, A. (2018). Identification of pseudo-nodal points on the basis of precise leveling campaigns data and GNSS. Acta Geodynamica et Geomaterialia, 15(1). https://doi.org/10.13168/AGG.2017.0028
  4. Bitelli, G., Bonsignore, F., Del Conte, S., Novali, F., Pellegrino, I., & Vittuari, L. (2015). Integrated Use of Advanced InSAR and GPS Data for Subsidence Monitoring. In Engineering Geology for Society and Territory - Volume 5 (pp. 147–150). Springer International Publishing. https://doi.org/10.1007/978-3-319-09048-1_29
  5. Catalão, J., Nico, G., Hanssen, R., & Catita, C. (2009). Integration of InSAR and GPS for vertical deformation monitoring: A case study in Faial and Pico Islands. Proceedings of the Fringe 2009 Workshop, 1–7.
  6. Del Soldato, M., Confuorto, P., Bianchini, S., Sbarra, P., & Casagli, N. (2021). Review of Works Combining GNSS and InSAR in Europe. Remote Sensing, 13(9), 1684. https://doi.org/10.3390/rs13091684
  7. Fan, J., & Gijbels, I. (2018). Local Polynomial Modelling and Its Applications. Routledge. https://doi.org/10.1201/9780203748725
  8. Farolfi, G., Bianchini, S., & Casagli, N. (2019). Integration of GNSS and Satellite InSAR Data: Derivation of Fine-Scale Vertical Surface Motion Maps of Po Plain, Northern Apennines, and Southern Alps, Italy. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 319–328. https://doi.org/10.1109/TGRS.2018.2854371
  9. Ferretti, A., Novali, F., Giannico, C., Uttini, A., Iannicella, I., & Mizuno, T. (2019). A Squeesar Database Over the Entire Japanese Territory. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2078–2080. https://doi.org/10.1109/IGARSS.2019.8900052
  10. Ferretti A, Passera E, & Capes R. (2023). Algorithm Theoretical Basis Document, EGMS-D3-ALG-SC1-2.0-006, End-to-end implementation and operation of the European Ground Motion Service (EGMS). https://land.copernicus.eu/en/technical-library/egms-algorithm-theoretic...@@download/file
  11. Guo, C., Nie, J., Tian, J., Wang, W., Cheng, C., Wang, B., Yin, H., & Zhang, H. (2019). Vertical ground displacements in the Shandong Province derived from long-term GNSS and leveling surveying. Advances in Space Research, 64(7), 1388–1397. https://doi.org/10.1016/j.asr.2019.06.035
  12. Heiskanen, W., & Moritz, H. (1967). Physical Geodesy. W.H. Freeman and Company.
  13. Kenyeres, A., Bellet, J. G., Bruyninx, C., Caporali, A., de Doncker, F., Droscak, B., Duret, A., Franke, P., Georgiev, I., Bingley, R., Huisman, L., Jivall, L., Khoda, O., Kollo, K., Kurt, A. I., Lahtinen, S., Legrand, J., Magyar, B., Mesmaker, D., … Weber, M. (2019). Regional integration of long-term national dense GNSS network solutions. GPS Solutions, 23(4), 122. https://doi.org/10.1007/s10291-019-0902-7
  14. Kowalczyk, A. M., & Bajerowski, T. (2020). Development of the Theory of Six Value Aggregation Paths in Network Modeling for Spatial Analyses. ISPRS International Journal of Geo-Information, 9(4), 234. https://doi.org/10.3390/ijgi9040234
  15. Kowalczyk, K. (2005). Determination of land uplift in the area of Poland. In D. (Cygas, D. ; F. K. (Froehner, K. Cygas (Ed.), 6th International Conference Environment, al Engineering (pp. 903–907). 2005.
  16. Kowalczyk, K. (2019). Changes in mean sea level on the polish coast of the baltic sea based on tide gauge data from the years 1811–2015. Acta Geodynamica et Geomaterialia, 16(2). https://doi.org/10.13168/AGG.2019.0016
  17. Kowalczyk, K., Kowalczyk, A. M., & Chojka, A. (2020). Modeling of the vertical movements of the earth’s crust in poland with the co-kriging method based on various sources of data. Applied Sciences (Switzerland), 10(9). https://doi.org/10.3390/app10093004
  18. Le Gal, M., Fernández-Montblanc, T., Montes Perez, J., Duo, E., Souto Ceccon, P., Ciavola, P., & Armaroli, C. (2024). Influence of model configuration for coastal flooding across Europe. Coastal Engineering, 192, 104541. https://doi.org/10.1016/j.coastaleng.2024.104541
  19. Łyszkowicz, A., Pelc-Mieczkowska, R., Bernatowicz, A., & Savchuk, S. (2021). First Results of Time Series Analysis of the Permanent GNSS Observations at Polish EPN Stations Using GipsyX Software. Artificial Satellites, 56(3), 101–118. https://doi.org/10.2478/arsa-2021-0008
  20. Naumowicz, B., & Kowalczyk, K. (2025). Integration of Leveling and GNSS Data to Develop Relative Vertical Movements of the Earth’s Crust Using Hybrid Models. Applied Sciences, 15(15), 8224. https://doi.org/10.3390/app15158224
  21. Naumowicz, B., Kowalczyk, K., & Pelc‐Mieczkowska, R. (2024). PPP Solution‐Based Model of Absolute Vertical Movements of the Earth’s Crust in Poland with Consideration of Geological, Tectonic, Hydrological and Mineral Information. Earth and Space Science, 11(12). https://doi.org/10.1029/2023EA003268
  22. Parizzi, A., Rodriguez Gonzalez, F., & Brcic, R. (2020). A Covariance-Based Approach to Merging InSAR and GNSS Displacement Rate Measurements. Remote Sensing, 12(2), 300. https://doi.org/10.3390/rs12020300
  23. Peifer, H. (2011). About the EEA reference grid. https://epanet.eea.europa.eu/Eionet/workspace/docs/about-the-eea-referen...
  24. Pelc‑Mieczkowska, R. (2020). Preliminary Analysis of the Applicability of the GPS PPP Method in Geodynamic Studies. Geomatics and Environmental Engineering, 14(4), 57–68. https://doi.org/10.7494/geom.2020.14.4.57
  25. Piña‐Valdés, J., Socquet, A., Beauval, C., Doin, M., D’Agostino, N., & Shen, Z. (2022). 3D GNSS Velocity Field Sheds Light on the Deformation Mechanisms in Europe: Effects of the Vertical Crustal Motion on the Distribution of Seismicity. Journal of Geophysical Research: Solid Earth, 127(6). https://doi.org/10.1029/2021JB023451
  26. Renalt Capes, & Emanuele Passera. (2023). Product Description and Format Specification Date: 25/10/2023 Doc. Version: 2.0 End-to-end implementation and operation of the European Ground Motion Service (EGMS).
  27. Tretyak, K., Brusak, I., & Babchenko, V. (2024). Recent deformations of the Earth’s crust in Ukraine based on GNSS network data from GEOTERRACE AND SYSTEM.NET. Geodynamics, 2(37)2024(2(37)), 56–68. https://doi.org/10.23939/jgd2024.02.056
  28. Tretyak, K., & Dosyn, S. (2015). Study of Vertical Movements of the European Crust Using Tide Gauge and Gnss Observations. Reports on Geodesy and Geoinformatics, 97(1), 112–131. https://doi.org/10.2478/rgg-2014-0016
  29. Trevoho, I., Chetverikov, B., Babiy, L., & Malanchuk, M. (2020). Monitoring of displacements and deformations of the earth’s surface near the Stebnyk city using radar images of Sentinel-1. Geodesy and Cartography, 85–96. https://doi.org/10.24425/gac.2020.131079
  30. Wieczorek, B. (2019). Evaluation of deformations in the urban area of Olsztyn using Sentinel-1 SAR interferometry. Acta Geodynamica et Geomaterialia, 5–18. https://doi.org/10.13168/AGG.2019.0041