INVESTIGATION OF THE RETURN FLOW AT THE AIR DISTRIBUTION BY SWIRL AND FLAT LAYING AIR JETS IN SMALL-SIZED PREMISES

2020;
: 38-45
1
Lviv Polytechnic National University
2
3Bialystok University of Technology, Faculty of Civil and Environmental Engineering
3
Technical University of Kosice, Slovakia, Institute of Architectural Engineering
4
Lviv Polytechnic National University, Department of Heat and Gas Supply and Ventilation
5
Lviv Polytechnic National University, Department of Heat and Gas Supply and Ventilation

In this article the results of return flow at air distribution by flat laying jets experimental investigations are presented. The chart is composed, analytic equations are also obtained. By these results high efficiency of proposed air distribution scheme using in technological small-sized rooms is shown. The purpose of the work is to study the nature of the propagation of the swirl and flat flooring jets in a limited space of a production space of low height with the presence of technological equipment and maintenance personnel in it, to identify the patterns of development of the air tidal stream in the reverse flow and to justify the calculation methodology. The quantitative description of the characteristics and regularities of the development of the swirl and flat flooring compressed jets in the reverse flow is established. Calculation dependences were obtained for determining the parameters of the swirl and flat flooring compressed jets in the reverse flow. It is substantiated that the efficiency of the application of the swirl and flat flooring jets to supply air to the working area of the technological premises is high. The obtained results allow us to calculate the initial velocity of the swirl and tidal flat flooring compressed stream in a small-sized production rooms with the presence of technological equipment and service personnel and to determine the geometric parameters of the air distribution device. Application of air distribution with the use of the swirl and flat air jet laying effect allows to significantly increase the Air Distribution Performance Index criteria when supplying a big amount of air to the technological premises and thereby reducing the material consumption of the ventilation system.

Bin Zhao, Xianting Li, & Qisen Yanb Zhao. (2003). A simplified system for indoor airflow simulation. Building and Environment, Vol. 38, 543-552.
https://doi.org/10.1016/S0360-1323(02)00182-8
Chen, Q., & Srebric, J. (2001). Simplified diffuser boundary conditions for numerical room airflow models. Final Report for ASHRAE RP-1009, Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA, 181 p.
Holyoake. (2006). Diffuser Performance Data Sheet, Ceiling Fixed Pattern Radial Swirl Diffuser, Model CFP Radial Induction Swirl Diffuser.
Kapalo, P., Domnita, F., Bacotiu, C., & Podolak, M. (2018). The influence of occupants' body mass on carbon dioxide mass flow rate inside a university classroom - case study. International Journal of Environmental Health Research. Vol. 28, No.4, 432-447. ISSN 0960-3123. doi:10.1080/09603123.2018.1483010.
https://doi.org/10.1080/09603123.2018.1483010
Kapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019). Investigation of CO2 production depending on physical activity of students. International Journal of Environmental Health Research. Vol. 29, Issue 1, 31-44. ISSN: 09603123. doi:10.1080/09603123.2018.1506570.
https://doi.org/10.1080/09603123.2018.1506570
Kapalo, P., & Siroczki, P. (2014). Calculating the intensity of ventilation in classrooms on the basis of measured concentrations of carbon dioxide in Slovakia - case study. International Journal of Ventilation. Vol. 13, No.3, 247-257. ISSN 1473-3315. WOS: 000348585900004. 
https://doi.org/10.1080/14733315.2014.11684052
Kapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort microclimate in the classrooms under condition of the required air exchange, Eastern European Journal of Enterprise Technologies, Vol 5/10 (95), 6-14.
https://doi.org/10.15587/1729-4061.2018.143945
Kapalo, P., Vilcekova, S., & Voznyak, O. (2014). Using experimental measurements the concentrations of carbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions, Vol. 39, 1789-1794. ISBN 978-88-95608-30-3; ISSN 2283-9216.
Kapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate inside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations - Case Study, The 10th International Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30-35.
https://doi.org/10.3846/enviro.2017.262
Srebric, J., & Chen, Q. (2002). Simplified Numerical Models for Complex Air Supply Diffusers. HVAC&R Research 8(3), 277-294.
https://doi.org/10.1080/10789669.2002.10391442
Voznyak, O., Korbut, V., Davydenko, B., & Sukholova, I. (2019). Air distribution efficiency in a room by a two-flow device, Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and Environmental Engineering, Springer, Vol 47, 526-533.
https://doi.org/10.1007/978-3-030-27011-7_67
Grimitlin, М.I. (2004). Air distribution in the rooms. Issue 3, adapted and supplemented, Мoscow: AVOK North-West (in Russian)..
Gumen, O.M., Dovhaliuk, V.B., & Міleikovskyi, V.O. (2016). Determination of the intensity of turbulence of streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of Lviv Polytechnic National University: The theory and building practice, No.844, 76-83 (in Ukrainian).
Dovhaliuk, V.B., & Міleikovskyi, V.O. (2007). Efficiency of organization of air exchange in heat-stressed premises in compressed conditions, Journal: Building of Ukraine, No.3, 36. (in Ukrainian).
Dovhaliuk, V.B., & Міleikovskyi, V.O. (2008). Estimated model of non-isothermal stream, which is laid out on a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical Collection, Issue 12, Kyiv, KNUBA, 11-32 (in Ukrainian).
Dovhaliuk V.B., & Міleikovskyi V.O. (2013). Analytical studies of the macrostructure of jet currents for calculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11-32 (in Ukrainian).
Voznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and Indoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical University of Kosice. 148-152.
Voznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and Indoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical University of Kosice. 148-152.