The growing global problem of waste tire disposal is prompting the quest for environmentally friendly rubber recycling solutions to support the principles of a circular economy. The development of rubber concrete is a promising aspect. The review highlights the impact of using waste tire rubber in concrete, assesses the advantages and limitations for optimizing material characteristics, as well as environmental benefits. Results of the role of rubber content, size, and additives on the workability, strength, dynamic properties, and durability of rubber concrete are presented. It is shown that rubber crumb increases ductility and energy absorption, but reduces compressive strength and workability of concrete. However, the strategic use of additives such as nanosilica and steel fibers eliminates the loss of strength. Practical applications and environmental assessments show the practicality and environmental safety of rubber concrete.
Chittella, H., Yoon, L. W., Ramarad, S., & Lai, Zee-Wei. (2021). Rubber waste management: A review on methods, mechanism, and prospects. Polymer Degradation and Stability, 194, 109761. doi:10.1016/j.polymdegradstab.2021.109761
Tahami, S. A., Mirhosseini, A. F., Dessouky, S., Mork, H., & Kavussi, A. (2019). The use of high content of fine crumb rubber in asphalt mixes using dry process. Construction and Building Materials, 222, 643-653. doi:10.1016/j.conbuildmat.2019.06.180
Sabbrojjaman, M., Liu Y., & Tafsirojjaman, T. (2024). A comparative review on the utilisation of recycled waste glass, ceramic and rubber as fine aggregate on high performance concrete: Mechanical and durability properties. Developments in the Built Environment, 17, 100371. doi:10.1016/j.dibe.2024.100371
Rigotti, D., & Dorigato, A. (2022). Novel uses of recycled rubber in civil applications. Advanced Industrial and Engineering Polymer Research, 5(4), 214-233. doi:10.1016/j.aiepr.2022.08.005
Nagurskyy, A., Khlibyshyn, Y., Grynyshyn, O., & Kochubei, V. (2020). Rubber Crumb Modified Bitumen Produced from Crude Oils Residuals of Ukrainian Deposits. Chemistry & Chemical Technology, 14(3), 420-425. doi:10.23939/chcht14.03.420
Valentini, F., & Pegoretti, A. (2022). End-of-life options of tyres. A review. Advanced Industrial and Engineering Polymer Research, 5(4), 203-213. doi:10.1016/j.aiepr.2022.08.006
González, M. A., Rodríguez-Sosa, M. A., Vásquez-Bautista, Y. E., Rosario, E. del C., Durán‑Tiburcio, J. C., & Alarcón-Elbal, P. M. (2020). A survey of tire-breeding mosquitoes (Diptera: Culicidae) in the Dominican Republic: Considerations about a pressing issue. Biomédica, 40(3), 507-515. doi:10.7705/biomedica.5200
Goevert, D. (2023). The value of different recycling technologies for waste rubber tires in the circular economy—A review. Frontiers in Sustainability, 4, 1282805. doi:10.3389/frsus.2023.1282805
Jorgensen, M. S., & Remmen, A. (2018). A methodological approach to development of circular economy options in businesses. Procedia CIRP, 69, 816-821. doi:10.1016/j.procir.2017.12.002
European Tyre and Rubber Manufacturers' Association. (2021). End of Life Tyres Management [Press release]. Brussels: ETRMA. Retrieved from https://www.etrma.org/
Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34 (4), 431–442. doi:10.1016/j.cemconcomp.2012.01.004
Strukara, K., Kalman Šipoša T., Miličevićb, I., & Bušic, R. (2019). Potential use of rubber as aggregate in structural reinforced concrete element – A review. Engineering Structures, 188, 452-468. doi:10.1016/j.engstruct.2019.03.031
Abdelmonem, A., El-Feky, M. S., El-Sayed A.R., & Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. doi:10.1016/j.conbuildmat.2019.08.041
Youssf, O., Mohamed, A. E., & Julie, E. M. (2015). Experimental Investigation of Crumb Rubber Concrete Columns under Seismic Loading. Structures., 3, 13-27. doi:10.1016/j.istruc.2015.02.005
Feng, W., Liu, F., Yang, F., Li, L., & Jing, L. (2018). Experimental study on dynamic split tensile properties of rubber concrete. Construction and Building Materials, 165, 675–687. doi:10.1016/j.conbuildmat.2018.01.073
Su, H., Yang, J., Ling, T.-C., Ghataora, G. S., & Didar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. doi:10.1016/j.jclepro.2014.12.022
Azevedo, F., Pacheco-Torgal, F., Jesus, C., Barroso de Aguiar, J. L., & Camões A. F. (2012). Properties and durability of HPC with tyre rubber wastes. Construction and Building Materials, 34, 186–191. doi:10.1016/j.conbuildmat.2012.02.062
Thomas, B. S., Gupta, R. C., & Kalla, P. (2014). Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates. Construction and Building Materials, 59, 204–212. doi:10.1016/j.conbuildmat.2014.01.074
Youssf, O., Mills, J. E., & Hassanli, R. (2016). Assessment of the mechanical performance of crumb rubber concrete. Construction and Building Materials, 125, 175–183. doi:10.1016/j.conbuildmat.2016.08.040
Wang, H., Lin, C., & Lee, H. (2013). A study of the durability properties of waste tire rubber applied to self-compacting concrete. Construction and Building Materials, 41, 665–672. doi:10.1016/j.conbuildmat.2012.11.019
Youssf, O., Mills, J. E., Benn, T., Zhuge, Y., Ma, X., Roychand, R., & Gravina, R. J. (2020). Development of crumb rubber concrete for practical application in the residential construction sector—design and processing. Construction and Building Materials, 260, 119813. doi:10.1016/j.conbuildmat.2020.119813
Khan, S., Ashraf, S., Ali, S., & Khan, K. (2023). Experimental investigations on the mechanical properties and damage detection of carbon nanotubes modified crumb rubber concrete. Journal of Building Engineering, 75, 106937. doi:10.1016/j.jobe.2023.106937
Malik, M., & Singh, S. (2021). Properties of concrete with crumb rubber replacing fine aggregates (sand). International Journal of Engineering Research and Applications, 11(7), 1–12. doi:10.9790/9622-1107040112
Atahan, A. O., & Yücel, A. Ö. (2012). Crumb rubber in concrete: Static and dynamic evaluation. Construction and Building Materials, 36, 617–622. doi:10.1016/j.conbuildmat.2012.04.068
Ismail, M.K., & Hassan, A.A.A. (2017). Shear behaviour of large-scale rubberized concrete beams reinforced with steel fibres. Construction and Building Materials, 140, 43–57. doi:10.1016/j.conbuildmat.2017.02.109
Marushchak, U., Sydor, N., & Chaus, R. (2024). The effect of crumb rubber on the properties of modified Portland cement systems. Theory and Building Practice, 6(1), 49–54. doi:10.23939/jtbp2024.01.049
Angelin, A. F., Miranda, E. J. P., Dos Santos, J. M. C., Lintz, R. C. C., & Gachet-Barbosa, L. A. (2019). Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior. Construction and Building Materials, 200, 248–254. doi:10.1016/j.conbuildmat.2018.12.123
Mendis, S., Al-Deen, S., & Ashraf, M. (2018). Flexural shear behaviour of reinforced Crumbed Rubber Concrete beam. Construction and Building Materials, 166, 779–791. doi:10.1016/j.conbuildmat.2018.01.150
Gesoğlu, M., & Güneyisi, E. (2014). Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 73, 19–24. doi: 10.1016/j.conbuildmat.2014.09.047
Si, R., Guo, S., & Dai, Q. (2017). Durability performance of rubberized mortar and concrete with NaOH-solution treated rubber particles. Construction and Building Materials, 153, 496–505. doi:10.1016/j.conbuildmat.2017.07.085
Rajagopal, M.R., Ganta, J., & Pamu, Y. (2024). Enhancing the Strength and the Environmental Performance of Concrete with Pre-Treated Crumb Rubber and Micro-Silica. Recycling, 9(3), 32. doi:10.3390/recycling9030032
Sanytsky, M., Marushchak, U., Olevych, Y., & Novitskiy, Y. (2020). Nano-modified ultra-rapid hardening Portland Cement compositions for high strength concretes. Lecture Notes in Civil Engineering, 47, 392-399. doi:10.1007/978-3-030-27011-7_50
Shahrul, S., Mohammed, B. S., Wahab, M. M. A., & Liew, M. S. (2021). Mechanical properties of crumb rubber mortar containing nano-silica using response surface methodology. Materials, 14(19), 5496. doi:10.3390/ma14195496
Gill, P., Jangra, P., Roychand, R., Saberian, M., & Li, J. (2023). Effects of various additives on the crumb rubber integrated geopolymer concrete. Cleaner Materials, 8, Article 100181. doi:10.1016/j.clema.2023.100181
Tahwia, A. M., Noshi, A., Abdellatief, M., & Matthana, M. H. (2024). Experimental investigation of rubberized concrete slab-on-grade containing tire-recycled steel fibers. Innovative Infrastructure Solutions, 9, Article number: 46. doi:10.1007/s41062-023-01354-9
Ghoniem, A., & Aboul Nour, L. (2024). Experimental investigation into the properties of crumb rubberized concrete incorporating corrugated round steel fibers. Archives of Civil and Mechanical Engineering, 24(2), Article number: 100. doi:10.1007/s43452-024-00883-z
Youssf, O. Mills, J. E., Ellis, M., Benn, T., Zhuge, Y., Ma, X., & Gravina, R.J. (2022). Practical application of crumb rubber concrete in residential slabs. Structures, 36, 837–853. doi:10.1016/j.istruc.2021.12.062